• 제목/요약/키워드: Aircraft operation

검색결과 567건 처리시간 0.035초

커머셜 항공기 에어 데이터 시스템의 인적오류 분석과 안전에 미치는 영향에 관한 연구 (Analysis of Human Errors in a Commercial Aircraft Air Data System and their Influence on Air Safety)

  • 박세종;전언찬
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.87-93
    • /
    • 2020
  • A key component of aviation safety is to eliminate the errors in commercial aircraft air data systems to ensure stable aviation operation. Although the technical aspects such as the maintenance and inspection play a pertinent role, human errors are expected to have a similar or even larger influence on the aviation safety. Aviation maintenance and inspection tasks are often performed by a complex organization, in which individuals perform a variety of tasks in an environment involving time pressure, sparse feedback, and complex conditions. These situational characteristics, combined with the general tendency of human error, may lead to various types of errors, which may have critical consequences such as accidents and loss of life. For instance, if an amber message "IAS DISAGREE" is displayed on the primary flight display while the aircraft is rolling on the runway to takeoff, the crew immediately performs a rejected takeoff operation and troubleshoots the air data system. This paper proposes alternative approaches to address the occurrence of defects due to the human factors involved in the practical processes of the air data system of commercial aircraft.

Recommendation of Navigation Performance for K-UAM Considering Multipath Error in Urban Environment Operation

  • Sangdo Park;Dongwon Jung;Hyang Sig Jun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.379-389
    • /
    • 2023
  • According to the Korea Urban Air Mobility (K-UAM) Concept of Operation (ConOps), the Global Navigation Satellite System (GNSS) is recommended as the primary navigation system and the performance specification will be implemented considering the standard of Performance Based Navigation (PBN). However, by taking into account the characteristics of an urban environment and the concurrent operations of multiple UAM aircraft, the current PBN standards for civil aviation seem difficult to be directly applied to an UAM aircraft. Therefore, by referring to technical documents published in the literature, this paper examines the feasibility of applying the proposed performance requirements to K-UAM, which follows the recommendation of navigation performance requirements for K-UAM. In accordance with the UAM ConOps, the UAM aircraft is anticipated to maintain low altitude during approach and landing phases. Subsequently, the navigation performance degradation could occur in the urban environment, and the primary degradation factor is identified as multipath error. For this reason, to ensure the safety and reliability of the K-UAM aircraft, it is necessary to analyze the degree of performance degradation related to the urban environment and then propose an alternative aid to enhance the navigation performance. To this end, the aim of this paper is to model the multipath effects of the GNSS in an urban environment and to carry out the simulation studies using the real GNSS datasets. Finally, the initial navigation performance requirement is proposed based on the results of the numerical simulation for the K-UAM.

A SiC MOSFET Based High Efficiency Interleaved Boost Converter for More Electric Aircraft

  • Zaman, Haider;Zheng, Xiancheng;Yang, Mengxin;Ali, Husan;Wu, Xiaohua
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.23-33
    • /
    • 2018
  • Silicon Carbide (SiC) MOSFET belongs to the family of wide-band gap devices with inherit property of low switching and conduction losses. The stable operation of SiC MOSFET at higher operating temperatures has invoked the interest of researchers in terms of its application to high power density (HPD) power converters. This paper presents a performance study of SiC MOSFET based two-phase interleaved boost converter (IBC) for regulation of avionics bus voltage in more electric aircraft (MEA). A 450W HPD, IBC has been developed for study, which delivers 28V output voltage when supplied by 24V battery. A gate driver design for SiC MOSFET is presented which ensures the operation of converter at 250kHz switching frequency, reduces the miller current and gate signal ringing. The peak current mode control (PCMC) has been employed for load voltage regulation. The efficiency of SiC MOSFET based IBC converter is compared against Si counterpart. Experimentally obtained efficiency results are presented to show that SiC MOSFET is the device of choice under a heavy load and high switching frequency operation.

항공기용 ABS 제동시스템의 노면 조건별 제동특성에 관한 시험적 연구 (Experimental Research on Braking Characteristics of Aircraft ABS Brake System with Ground Conditions)

  • 이미선
    • 한국항공운항학회지
    • /
    • 제25권2호
    • /
    • pp.18-24
    • /
    • 2017
  • Results of the experimental research are described in this thesis, which are about braking characteristics of aircraft ABS brake system with different ground conditions. Dynamo-tests were conducted with the state of the application aircraft condition and with two different ground conditions. The Braking characteristics on each ground condition were drawn from the results of occurrence of skid, braking distance and deceleration. The braking performance of the application aircraft could be anticipated and the efficient range of braking operation could be set with those results.

Characterization and Performance Evaluation of Advanced Aircraft Electric Power Systems

  • Eid, Ahmad;El-Kishky, Hassan;Abdel-Salam, Mazen;El-Mohandes, Mohamed T.
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.563-571
    • /
    • 2010
  • A model of an advanced aircraft electric power system is developed and studied under variable-speed constant-frequency (VSCF) operation. The frequency of the generator's output voltage is varied from 400-Hz to 800-Hz for different loading scenarios. Power conversions are obtained using 12-pulse power converters. To reduce the harmonic contents of the generator output waveforms, two high-pass passive filters are designed and installed one at a time at the generator terminals. The performance of the two passive filters is compared according to their losses and effectiveness. The power quality characteristics of the studied VSCF aircraft electric power system are presented and the effectiveness of the proposed filter is demonstrated through compliance with the newly published aircraft electrical standards MIL-STD-704F.

부품공유를 통한 저가항공사의 효율성 향상 방안 연구 (A study on Improving Operation Efficiency of LCC through Parts Pooling)

  • 최세종
    • 한국항공운항학회지
    • /
    • 제23권1호
    • /
    • pp.120-125
    • /
    • 2015
  • Passengers and Airlines wish neither delay nor cancellation due to aircraft defects. However, about 1 delay or cancellation case occurs out of 100 departures worldwide whereas 1 quarter case does in Korean domestic industry. Independent LCC carriers in Korea have almost double case. Most cases are recovered by replacing aircraft components. Airlines have prepared the spare components based on the reliability data by manufacturers to rectify defects or perform preventive maintenances. The total value for initial spares including engine is 40% of the aircraft price when they operate less than 5 aircraft. The more airlines operate the aircraft, the less the ratio of the investment for spares reflecting the economy of scale. This study intends to suggest how to improve the efficiencies as well as the safety of LCC throughout parts pooling including engines.

Design space exploration in aircraft conceptual design phase based on system-of-systems simulation

  • Tian, Yifeng;Liu, Hu;Huang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.624-635
    • /
    • 2015
  • Design space exploration has been much neglected in aircraft conceptual design phase, which often leads to a waste of time and cost in design, manufacture and operation process. It is necessary to explore design space based on operational system-of-systems (SoS) simulation during the early phase for a competitive design. This paper proposes a methodology to analyze aircraft performance parameters in four steps: combination of parameters, object analysis, operational simulation, and key-parameters analysis. Meanwhile, the design space of an unmanned aerial vehicle applied in earthquake search and rescue SoS is explored based on this methodology. The results show that applying SoS simulation into design phase has important reference value for designers on aircraft conceptual design.

인간공학실험용 항공기 모의비행훈련장비 개발 (Aircraft flight simulator development for ergonomics test)

  • 오제상
    • 대한인간공학회지
    • /
    • 제16권1호
    • /
    • pp.97-105
    • /
    • 1997
  • An aircraft simulator for ergonomics testing and pilot training was developed from the joint work Agency for Defense Development(ADD) and Daewoo Heavy Industry, LTD, in Korea at first time. It is basically to satisfy the requirements established by FAA-AC-120-40C ( 1995-JAN-26). The aircraft simulator will be used mainly for ergonomics testing and pilot training for basic trainer on ADD and Korea Air Force in near futrue. This simulator reproduces faithfully the cockpit and flight characteristics of the KTX-1 aircraft. It is one of the latest full flight simulators that have the CGI(computer graphic image) visual system and six degree of freedom motions system. Development efforts focused on user-oriented design approach for ergonomics testing and flight training of pilots. Main characteristics of each subsystem are described such as cockpit, instruments, control loading system, motion system, visual system, aural system, instructor operation station and aircraft simulation softwear.

  • PDF

Implementation of CEI frequency operation function in IMDC for FA-50 aircraft

  • You, Eun-Kyung;Kim, Hyeock-Jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.1-7
    • /
    • 2018
  • The Korean Air Force FA-50 aircraft currently operating in the Air Force is using Ultra High Frequency (UHF) frequency communications for navigation communications with ground control stations or other aircraft. The pilot communicates by changing frequency at any time during flight, and performs communication by directly inputting from the Integrated Up-Front Controller installed in the cockpit. The frequency is designated as secret, and the pilot receives the task with the frequency channel number (001~xxx) and finds the frequency of the channel in the list of 4,000 frequency channels and inputs it manually. This reduces the safety and convenience of pilots' operations and exposes them to hazards that may occur especially during night flight missions. In this paper, we propose a function to embed the frequency corresponding to the frequency channel list in IMDC, the aircraft mission computer, and to automatically change the frequency when the pilot only inputs the channel number.

군용 항공기 외장물의 비행 안전성 분석에 관한 연구 (A Study on the Flight Safety Analysis of Military Aircraft External Stores)

  • 김현수;김민수;신병준;조영희
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.83-90
    • /
    • 2023
  • The external store fitted to the aircraft may affect the flight characteristics and flight safety of the aircraft, which requires the analyses and testing on it. The purpose of this study is to identify and analyze types of failures that can affect the flight safety of aircraft due to the installation of external stores, and to check the flight safety of aircraft through dropping tests of the external stores. After identifying the types of failures that could affect the flight safety of the aircraft, the criticality was calculated to analyze the effect on the flight safety of the aircraft. Four types of failures were selected: unintentional dropping, failure of dropping, unintentional main wing deployment, and release of tail wing restraint of the external store, which are considered to affect the flight safety of the aircraft due to the operation of the external store. As a result of the aircraft's flight safety analysis on the failure types, the criticality requirements were met. Based on this, after obtaining the airworthiness certification, the drop test was successfully performed to confirm the flight safety of the aircraft by mounting an external store on the aircraft. However, in addition to the four hazards carried out in this study, the real external stores of the military aircraft may have various factors affecting the flight safety of the aircraft, so further research will be needed.