• Title/Summary/Keyword: Aircraft Vibration

Search Result 349, Processing Time 0.271 seconds

Test and Simulation of an Active Vibration Control System for Helicopter Applications

  • Kim, Do-Hyung;Kim, Tae-Joo;Jung, Se-Un;Kwak, Dong-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.442-453
    • /
    • 2016
  • A significant source of vibration in helicopters is the main rotor system, and it is a technical challenge to reduce the vibration in order to ensure the comfort of crew and passengers. Several types of passive devices have been applied to conventional helicopters in order to reduce the vibration. In recent years, helicopter manufacturers have increasingly adopted active vibration control systems (AVCSs) due to their superior performance with lower weight compared with passive devices. AVCSs can also maintain their performance over aircraft configuration and flight condition changes. As part of the development of AVCS software for light civil helicopter (LCH) applications, a test bench is constructed and vibration control tests and simulations are performed in this study. The test bench, which represents the airframe, is excited using a pair of counter rotating force generators (CRFGs) and a multiple input single output (MISO) AVCS that consists of three accelerometer sensors and a pair of CRFGs; a filtered-x least mean square (LMS) algorithm is applied for the vibration reduction. First, the vibration control tests are performed with uniform sensor weights; then, the change in the control performance according to changes in the sensor weight is investigated and compared with the simulation results. It is found that the vibration control performance can be tuned through adjusting the weights of the three sensors, even if only one actuator is used.

Improvement of the Efficiency of a Twin-fluid Nozzle using Ultrasonic Vibration (초음파 가진을 이용한 2-유체 노즐의 효율 향상)

  • 주은선;나우정;정진도;송민근;이경열
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.317-326
    • /
    • 2002
  • Characteristics of a twin-fluid spray with ultrasonic vibration were examined in order to obtain a high efficiency of cold-fog spray of the automatic pest control machine which has been widely used in protected horticulture recently. An electrostrictive vibrator of PZT BLT and a magnetostrictive $\pi$-type vibrator were used applied as the ultrasonic transducers with a frequency of 28 kHz. All experiments were conducted in 4 methods of spray ; a conventional spray method without ultrasonic forcing, an indirect vibration method with ultrasonic forcing, an improving-quality method by ultrasonic forced within liquid, and a combined-use method with both of the indirect vibration method and the improving quality method. It was found that the ultrasonic energy increased the atomization efficiency of spray droplets about 10% and especially much more in the case of the combined-use method.

Study on Vibration Characteristics in terms of Airfoil Cross-Sectional Shape by Using Co-rotational Plane Beam-Transient analysis (Co-rotational Plane beam-Transient analysis를 이용한 에어포일 단면 형상 변화에 따른 진동특성 연구)

  • Kim, Se-Ill;Kim, Yong-Se;Park, Chul-Woo;Shin, SangJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.203-208
    • /
    • 2016
  • In this paper, vibration characteristics in terms of the airfoil cross-sectional shape was examined by using the EDISON co-rotational plane beam-transient analysis. Assuming aircraft wing as a cantilevered beam with a constant cross-sectional shape, natural frequencies of each airfoil shape was compared while varying airfoil maximum thickness and maximum camber length, using Fast Fourier Transformation(FFT). When the airfoil maximum thickness was varied, natural frequency showed peak value at 18% chord, and decreased afterwards. When the airfoil maximum camber length was varied, natural frequency either increased or decreased at 6% chord, while at 8% the natural frequency showed its maximum. Applying such trends to B-737 wing airfoil, an improved B-737_mod airfoil shape was obtained with regard to the vibration characteristics.

  • PDF

The Structural Design and Analysis of Spring Stabilizer for Aircraft Surveillance and Reconnaissance EO/IR Equipment (감시정찰 전자광학장비용 스프링 안정화 장치 구조 설계 및 해석 연구)

  • Yoonju Jung;Suhyeon Kim;Sanghyun Nam;Injae Park;Mingyun Park;Taekyun Kim;Hwanseok Yang;Seungwook Park;Seungha Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.28-33
    • /
    • 2023
  • In this research, the isolator and the inner gimbal inside of typical EO/IR equipment were replaced with a spring stabilizer. This Spring stabilizer system revealed an internal platform capable of external vibration damping and 6-DOF driving. This system was designed based on machined springs and spring modules of the spring stabilizer, structure, and other fixture. Through modal vibration analysis, suitable material for the spring was determined. Structural stability of the spring stabilization device was determined through random vibration analysis.

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

Fatigue Life Prediction of Sensor Pod for Aircraft Considering Aircraft Loads (비행체 하중을 고려한 항공기용 센서 포드의 피로수명 예측)

  • Cho, Jae Myung;Jang, Joon;Choi, Woo Chun;Bae, Jong In
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.32-39
    • /
    • 2019
  • Sensor pods mounted on the exterior of the aircraft used for tactical missions should have a fatigue life based on the expected load spectrum during operation. For mission equipment such as the sensor pod, the frequency fatigue life prediction method which applies the dynamic vibration environment condition is preferred due to the efficiency of the analysis. In this paper, a fatigue life prediction method in the frequency domain where stress due to static and dynamic loads is synthesized based on the actual flight load spectrum is proposed. After comparison with the existing analysis method, the fatigue life of the proposed analysis method was predicted conservatively. The proposed sensor pods satisfy the requirements of the fatigue life.

A Study on the Predictive Maintenance of 5 Axis CNC Machine Tools for Cutting of Large Aircraft Parts (대형 항공부품용 5축 가공기에서의 예측정비에 관한 연구)

  • Park, Chulsoon;Bae, Sungmoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.161-167
    • /
    • 2020
  • In the process of cutting large aircraft parts, the tool may be abnormally worn or damaged due to various factors such as mechanical vibration, disturbances such as chips, and physical properties of the workpiece, which may result in deterioration of the surface quality of the workpiece. Because workpieces used for large aircrafts parts are expensive and require strict processing quality, a maintenance plan is required to minimize the deterioration of the workpiece quality that can be caused by unexpected abnormalities of the tool and take maintenance measures at an earlier stage that does not adversely affect the machining. In this paper, we propose a method to indirectly monitor the tool condition that can affect the machining quality of large aircraft parts through real-time monitoring of the current signal applied to the spindle motor during machining by comparing whether the monitored current shows an abnormal pattern during actual machining by using this as a reference pattern. First, 30 types of tools are used for machining large aircraft parts, and three tools with relatively frequent breakages among these tools were selected as monitoring targets by reflecting the opinions of processing experts in the field. Second, when creating the CNC machining program, the M code, which is a CNC auxiliary function, is inserted at the starting and ending positions of the tool to be monitored using the editing tool, so that monitoring start and end times can be notified. Third, the monitoring program was run with the M code signal notified from the CNC controller by using the DAQ (Data Acquisition) device, and the machine learning algorithms for detecting abnormality of the current signal received in real time could be used to determine whether there was an abnormality. Fourth, through the implementation of the prototype system, the feasibility of the method proposed in this paper was shown and verified through an actual example.

Slosh & Vibration Qualification Test for Fuel tank of Rotorcraft (헬기용 연료탱크 Slosh & Vibration 인증시험)

  • Jung, Tae-Kyong;Jang, Ki-Won;Jun, Pil-Sun;Ha, Byoung-Geun;Kim, Sung-Chan;Kim, Hyun-Gi;Lee, Gui-Cheon;Shin, Dong-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.713-716
    • /
    • 2010
  • Slosh and vibration effects of fuel inside of fuel tank can be occurred due to the acceleration and flight speed during the rotorcraft flight. It can lead to the failure of internal fuel component and fuel tank skin can be damaged. This is directly related to human survival. Military specification (MIL-DTL-27422D) specifies that stability of aircraft fuel tank and internal component against slosh &vibration load shall be verified through the qualification test procedures. This report shows the establishment of slosh and vibration test facility and KUH fuel tank qualification test result.

  • PDF

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

Comparison of Noise Abatement Policies in Advanced Countries and Korea (선진국과 한국의 소음저감정책 비교)

  • Kang, Dae-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1177-1184
    • /
    • 2011
  • One of the main objectives of noise control act is to define and ensure application and respect of noise exposure limits. Most advanced countries have prepared a legal framework for noise limits either by national laws, ordinances or municipal by-laws. A large number of advaced countries have adopted the Leq index for the main sources of noise(road, railway, industry). The exception is aircraft noise for which regulatory practice is highly disparate. These differences in the indices adopted, the periods and areas to which regulations apply, definitions of measurement conditions and ways in which noise levels are calculated make it difficult to compare the current advanced countries standards. This study presents the current noise abatement policy of the advanced countries and proposes the improvement of the current noise abatement policy of Korea to catch up with it of the advanced countries.