• Title/Summary/Keyword: Aircraft Software

Search Result 258, Processing Time 0.029 seconds

A Study on the Design of Software Switching Mechanism for Develops the Flight Control Law (제어법칙 개발을 위한 소프트웨어 전환장치 설계에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Shin, Ji-Hwan;Park, Sang-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1130-1137
    • /
    • 2006
  • Relaxed Static Stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, the flight control systems are necessary to stabilizes the unstable aircraft and provides adequate handling qualities. The initial production flight control system are verified by flight test and it's always an elements of danger because of flight-critical nature of control law function and design error due to model base design method. These critical issues impact to flight safety, and it could be lead to a loss of aircraft and pilot's life. Therefore, development of an easily modifiable RFCS(Research Flight Control System) capable of reverting to a PFCS(Primary Flight Control System) of reliable control law must be developed to guarantee the flight safety. This paper addresses the concept of SSWM(Software Switching Mechanism) using the fader logic such as TFS(Transient Free Switch) based on T-50 flight control law. The result of the analysis based on non-real time simulation in-house software using SSWM reveals that the flight control system are switching between two computers without any problem.

Development of Brake Controller for fixed-wing aircraft using hardware In-the-Loop Simulation

  • Lee, Ki-Chang;Jeon, Jeong-Woo;Hwang, Don-Ha;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.535-538
    • /
    • 2005
  • Today, most fixed-wing aircrafts are equipped with the antiskid brake system. It can modulate braking moments in the wheels optimally, when an aircraft is landing. So it can reduce landing distance and increase safeties. The antiskid brake system for an aircraft are mainly composed of braking moment modulators (hydraulic control valves) and brake control unit. In this paper, a Mark IV type - fully digital - brake controller is studied. For the development of its control algorithms, a 5-DOF (Degree of Freedom) aircraft landing model is composed in the form of matlab/simulink model at first. Then, braking moment control algorithms using wheel decelerations and slips are made. The developed algorithms are tested in software simulations using state-flow toolboxes in matlab/simulink model. Also, a real-time simulation systems are made, which use hydraulic brake systems of a real aircraft, pressure control valves and its controller as hardware components of HIL(Hardware In-the-Loop) simulation. Algorithms tested in software simulations are coded into the controller and the real-time landing simulations are made in very severe road conditions. The real-time simulation results are presented.

  • PDF

A Study on the Configuration Modeling and Aerodynamic Analysis of Small Airplanes for Flight Training (교육용 소형 항공기의 형상 모델링과 공력 분석에 관한 연구)

  • Cho, Hwankee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • This paper presents comparative results of configuration modeling and aerodynamic analysis to single-engine airplanes such as C-172, SR-20, and DA40NG. The software OpenVSP was used as an airplane configuration modeling tool. OpenVSP can provide the fastest method to get three-dimensional aircraft configuration from given basic data and drawings of aircraft. Parametric design input in OpenVSP, from given aircraft geometric parameters, was applied to small airplanes mentioned. New aircraft models in this study were reversely designed to coincide with the publicly obtained dimensions of the original aircraft. The basic aerodynamic analysis of newly designed modeling aircraft was performed by the vortex lattice method. Results are shown that the similarity of aerodynamic data obtained except for the lack of DA40NG. In conclusion, the modeling process applied to this work is valuable to obtain conceptual design insight in the reverse design from the small airplanes currently in use for flight training.

The Change of Inspection&Replacement Period for ROKAF's Operating Aircraft Parts (한국공군 운영 항공기 부품 검사/교환주기 변경 - 예방정비 대책 품질개선의 일환으로 -)

  • Kwo Seung-Chul
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.2
    • /
    • pp.108-121
    • /
    • 2004
  • This paper deals with a procedure of changing the current inspection & replacement periods for ROKAF aircraft parts. ROKAF is mostly operating aircraft of foreign makes, and takes maintenance actions according to Technical Orders(TO.) published by foreign aircraft manufacturers. Therefore ROKAF inspects and replaces specific parts at the time noticed from T.O.. These inspection and replacement periods are determined by manufacturers according to the standard operating environment and parts' durability. But the standard operating environment Is different from operator's environment. Because of this difference, the inspection and replacement periods have to be changed according to operators' operation environment. It is resonable that the manufacturer, having design materials and life test data of parts, changes those periods together with materials of operators' operation environment. But we have many difficulties in obtaining the design materials and life test data. Then this paper proposes a procedure of changing the periods of aircraft's parts with life data obtained during operating aircraft. For the reliability analysis, a software of RELEST (Reliability Estimation Version 1.0) is used.

A Study on Integrated Airworthiness Certification Criteria for Avionics Software Safety and Security (항공소프트웨어 안전과 보안을 위한 통합 감항 인증기준 개발 연구)

  • Han, Man-Goon;Park, Tae-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.86-94
    • /
    • 2018
  • As the use of software is increasing in aircraft system, an exposure to the threat of safety and security also continues to grow. Although certification criteria for software safety such as DO-178C have already been established, specific certification criteria for software security have not yet been included. Recently DO-326A, DO-356 and DO-355 have been published separately for aircraft and system airworthiness security certification criteria. However, to comply individual certification criteria and procedures, it requires the additional cost and effort. Therefore, this paper proposes the efficient integrated certification criteria saving cost, effort and time by combining the certification criteria for software safety and security.

A Study on the Software Middleware Architecture of Turbo Fan Engine FADEC for Aircraft (항공기용 터보팬 엔진 FADEC의 소프트웨어 미들웨어 아키텍처에 관한 연구)

  • Changyeol Lee;Youngho Cho;Ikchan Lim;Kihyuk Kwon;Junghoe Kim;Gyujin Na;Hoyeon Jang
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.102-108
    • /
    • 2024
  • With the recent increase in the development of domestic independent turbofan engines for aircraft, there is a need to develop software for FADEC(Full Authority Digital Engine Control) with real-time fault diagnosis functions to enhance fuel efficiency, engine performance, and reliability. As engine control algorithms become more sophisticated, software is being developed using Model-Based Design(model-based development) methods. This paper introduces the Middleware architecture of FADEC(Full Authority Digital Engine Control), which connects hardware with Model-Based Design(model-based development) software. Given the high reliability and safety required for turbofan engines in aircraft, the design complies with DO-178C[1] International Airborne Systems and Equipment Certification Guidelines.

Aerodynamic design optimization of an aircraft wing for drag reduction using computational fluid dynamics approach

  • Shiva, Kumar M.R;Srinath, R;Vigneshwar, K;Ravi, Kumar B
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2020
  • The aircraft industry supports aviation by building aircraft and manufacturing aircraft parts for their maintenance. Fuel economization is one of the biggest concerns in the aircraft industry. The reduction in specific fuel consumption of aircraft can be achieved by a variety of means, simplest and more effective is the one to impose minor modifications in the aircraft main wing or the parts which are exposed to the air flow. This method can lead to a reduction in aerodynamic resistance offered by the air and have a smoother flight. The main objective of this study is to propose geometric design modifications on an existing aircraft wing which acts as a vortex generator and it can reduce the drag and increase lift to drag ratio, leading to lower fuel consumption. The NACA 2412 aircraft wing is modified and designed. Rigorous flow analysis is carried out using computational fluid dynamics based software Ansys Fluent. Results show that saw tooth modification to the main wing shows the best aerodynamic efficiency as compared to other modifications.

A Survey on the Software Technology of Health Management System for Aircraft Gas Turbine Engine (항공기용 가스터빈 엔진의 건전성 관리를 위한 소프트웨어 발전 동향)

  • Park, Iksoo;Ki, Taeseok;Kim, Junghoe;Min, Seongki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.13-21
    • /
    • 2018
  • Technology trends of onboard and ground health management system software for aircraft gas turbine engines are surveyed. The software has changed from ground based software for fault detection and identification to a model based health identification technology for onboard software. This advanced algorithm is currently under development in a technically advanced country while domestic research is on the birth stage. This paper suggested that the optimal development plan of the software considering current technology state.

Development of Technology for Optimized Wing Design of Subsonic Aircraft (아음속 항공기 날개 최적 설계 기술 개발)

  • Kim, Cheol-Wan;Choi, Dong-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.175-182
    • /
    • 2011
  • Optimized design was performed for a subsonic aircraft wing. The subsonic aircraft is dual turbo-prop and carrying less than 100 passengers. The cruise speed is Mach 0.6. The design was performed by two stages. The first stage is to decide the height of horizontal tail by analyzing the directional stability with Vorstab and then, the optimized wing configuration was selected with Piano, a optimizer commercially available. Fluent, a commercial CFD software was utilized to predict the aerodynamic performance of the aircraft. Drag of the aircraft was minimized with maintaining constant lift for cruise. The optimization reduced 10 counts from the initial wing configuration.

Comparative Study on Annoyance of Traffic and Aircraft noise (도로소음과 항공기소음의 성가심 반응 비교 연구)

  • Lee, Ki-Jung;Chang, Seo-Il;Lee, Kun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.131-134
    • /
    • 2005
  • This study examine the annoyance of transportation noise exposure and found the survey method about which noise induces more disturbance or annoyance when more than two kinds of noise exist. This study describes the noise annoyance survey performed in the vicinity of Sin-wol interchange. This residential area was exposed to aircraft noise and traffic noise simultaneously and aircraft noise exposure of this area is about 81 WECPNL, traffic noise exposure is about 81.2 dB(A) nearby road. Noise sources are grouped into three part, traffic noise, aircraft noise and community noise. The questionnaire includes how often, how loud each noise is heard. Also this deals with comparative annoyance reaction from specific noise sources such as aircraft or traffic and its disturbance of daily activities. Facade noise mapping are executed by using a commercial noise mapping software.

  • PDF