• Title/Summary/Keyword: Aircraft Radar

Search Result 193, Processing Time 0.028 seconds

A Strategy for Integrated Target Recognition and High Quality Compression (목표물 탐지를 고려한 통합 이미지 압축에 관한 연구)

  • 남진우
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.257-260
    • /
    • 2000
  • In modern battlefield situation, radar and infrared sensors may be located on aircraft having limited computational resources available for real-time computer processing. Hence sensor images are transmitted typically to central stations for processing and automatic target recognition/detection. Owing to the limited bandwidth channels that are typically available between the aircraft and processing stations, images are compressed prior to transmission to facilitate rapid transfer. In this paper we examine the problem of compressing sensor data for transmission, given that target recognition is the end goal. Performance result shows that the front-end target recognition system achieves a relatively high level of performance as well as a high compression ratio.

  • PDF

Analysis of the Monopulse Radar Tracking Errors using Orthogonally Deployed Antenna Sets for Cross-eye Jamming (십자형으로 배치된 크로스아이 재머 안테나를 이용한 모노펄스 레이다 재밍 오차 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.14-18
    • /
    • 2020
  • In this paper, when two sets of cross-eye jammer antennas are installed vertically to jam a monopulse radar, the jamming effects according to the jammer's phase difference, amplitude ratio, and radar angle of engagement are analyzed. The phase difference and amplitude ratio of the cross-eye jammer can be adjusted in the jammer, but since the angle of engagement is relatively determined by the radar, it is very important to respond to changes in the angle of engagement. The orthogonally deployed jammer antennas can be considered as a good way to increase the jamming effect while minimizing the hardware configuration, and the jamming effect is analyzed while changing the angle of inclination from 0° to 360°. This jammer greatly improves the jamming effects at the angles of incidence 45°~135° and 225°~315°, compared to a single jammer. And it is expected to be useful in the design of cross-eye jammers for military aircraft and ships.

Distance error of monopulse radar in cross-eye jamming using terrain bounce (지형 바운스를 이용하는 크로스 아이 재밍의 모노펄스 레이다 거리 오차)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.9-13
    • /
    • 2022
  • In this paper, the tracking error of monopulse radar caused by cross-eye jamming using terrain bounce is analyzed. Cross-eye jamming is a method of generating an error in a radar tracking system by simultaneously transmitting two signals with different phases and amplitudes. When the monopulse radar receives the cross-eye jamming signal generated by the terrain bounce, a tracking error occurs in the elevation direction. In the presence of multipath, this signal is a combination of the direct target return and a return seemingly emanating from the target image beneath the terrain surface. Terrain bounce jamming has the advantage of using a single jammer, but the space affecting the jamming is limited by the terrain reflection angle and the degree of scattering of the terrain. This study can be usefully used to protect ships from low-altitude missiles or aircraft in the sea.

A Study on the Measures for Detection Error from the Displacement Distortion of the RADAR Waveform (레이더 전파의 왜곡현상에서 오는 탐지 오류 저감 방안 연구)

  • Kim, Jin Hieu;Kim, ChangEun;Lee, Yong-Soo
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • $21^{st}$ century is digitally civilized era. Technologies such as AI, Iot, Big Data, Mobile and etc makes this era digitally advanced. These advancement of the technology greatly impacted detection range of the radar. Human's eye sight can see about 20Km and hear 20 ~ 20000 Hz. These limitations can be overcome using radar. This radar technology is used in military, aircraft, ship, vehicle and etc. to replace human eye. However, radar technology is capable of making False Alarm Rate. This document will propose the fix of these problems. Radar's distortion includes beam refraction, diffraction and reflection. These inaccurate data result in deterioration of human judgements and my cause various casualties and damages. Radar goes through annual testing to test how many false alarm is being produced. Normal radar usually makes 10 to 20 False alarms. In emergency situation, if operator were to follow this false alarm, this might result in following false object or take 12 more seconds to follow the right object. This problem can be overcome by using different radar data from different places and angles. This helps reduces False Alarm rate and track the object twice as fast.

A study on Flow Characteristics of the Semi-Circular inlet S-Shaped Intake at Various Angle of Incidence (입사각에 따른 반원형 입구형상 S-Shaped Intake에 대한 유동특성 연구)

  • Lee, Jihyeong;Cho, Jinsoo
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • Air intakes are an essential component of aircraft engines. They are mainly used to offer uniform airflows to engine faces. Fighter aircraft have to mask the engine face inside the fuselage in order to reduce the Radar Cross Section(RCS). Therefore, offset intakes like a S-Duct are one of promising components for this purpose. During a fight, it is unavoidable that the flow will enter the intakes at some face angles other than zero. In this case, the performance of the aircraft engine will be influenced to the angle of incidence. In this study, the CFD analysis of the semi-circular S-Duct with AR(0.5,0) is performed to investigate the influence of the angle of incidence on the performance of the S-Duct using a distortion coefficient. To consider the adverse pressure gradient, a $k-{\omega}$ SST turbulence model is employed. The secondary flow and flow separation are observed for all computational cases. It is found that the positive incidence angle produces the best performances.

Human-in-the-Loop Simulation Analysis of Integrated RPAS Operations in Trajectory Based Operations Environment

  • Oh, Hyeju;Kang, Jisoo;Kang, Seon-Young;Choi, Keeyoung;Lee, Hak-Tae;Jung, Hyuntae;Moon, Woo-Choon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.604-613
    • /
    • 2016
  • In this paper, Human-in-the-Loop (HiTL) simulations of Remotely Piloted Aircraft System (RPAS) operations in two different Air Traffic Management (ATM) concepts, conventional radar vectoring and Trajectory Based Operations (TBO), were performed to assess the impacts of RPAS integration in the future ATM environment. TBO concept maximizes the throughput by planning and sharing 4-D trajectories between pilots and controllers, and it is considered one of the key concepts to enable RPASs to operate with manned aircraft in congested airspaces. RPASs are characterized by having communication delay or temporary loss of communication. TBO capability was added to the integrated air traffic simulation system for this study, which was developed in the Inha University. HiTL simulations were performed by a trainee air traffic controller with three scenarios, and the data were analyzed using safety, efficiency, and controller workload metrics. The results suggest that TBO were effective in reducing delays and controller workload while maintaining the level of safety.

Survey of nonlinear state estimation in aerospace systems with Gaussian priors

  • Coelho, Milca F.;Bousson, Kouamana;Ahmed, Kawser
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.495-516
    • /
    • 2020
  • Nonlinear state estimation is a desirable and required technique for many situations in engineering (e.g., aircraft/spacecraft tracking, space situational awareness, collision warning, radar tracking, etc.). Due to high standards on performance in these applications, in the last few decades, there was an increasing demand for methods that are able to provide more accurate results. However, because of the mathematical complexity introduced by the nonlinearities of the models, the nonlinear state estimation uses techniques that, in practice, are not so well-established which, leads to sub-optimal results. It is important to take into account that each method will have advantages and limitations when facing specific environments. The main objective of this paper is to provide a comprehensive overview and interpretation of the most well-known methods for nonlinear state estimation with Gaussian priors. In particular, the Kalman filtering methods: EKF (Extended Kalman Filter), UKF (Unscented Kalman Filter), CKF (Cubature Kalman Filter) and EnKF (Ensemble Kalman Filter) with an aerospace perspective.

Conceptual Design of Fighter-class Aircraft Using Integrated Commercial Tools (통합된 상용 툴을 이용한 전투기급 항공기 개념설계)

  • Lee, Sung-Jin;Nam, Hwa Jin;Park, Young Keun;O, Jangwhan;Lee, Dae Yearl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.189-196
    • /
    • 2014
  • Automated design program using commercial process integration and optimization program was developed for conceptual design of fighter-class aircraft. Wind tunnel test data and performance analysis results were compared for the verification of analysis tool of this program, and the usefulness of the tool was found. After integration with radar cross section analysis tool, the correlation with configuration design variables of wing, tail and performance parameters was identified by design of experiment, and the optimized configuration for weight and RCS was derived from optimization of empty weight and average frontal RCS value. After parameter definition of fuselage, the program can be implemented for full aircraft configuration.

Analysis & investigation of EMI dispersion for protection aviation frequency (항공주파수 보호를 위한 전자파방해(EMI)분포조사 및 분석)

  • Park, Duck-Je
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.714-721
    • /
    • 2011
  • In this paper, developing management programs for EMI tracking can navigate the site quickly and solve EMI tracking cause and location to use materials such as analysis of air accidents, EMI site location data of 1000 RF companys, radio wave spectrum analysis and audio data. these data are databased and used comparable data. Also, EMI has been prevented by establishing continuous monitoring system through a 24-hour surveillance. Therefore we were able to provide high quality air waves in order to prevent aircraft accidents. In addition, radar control staff of Korea Airports Corporation against passenger aircraft that will prevent the worst aircraft accident have been established based to continue periodic aviation frequency protection and Portable Electronic Devices(PED) on board aircraft to prevent the culture of safety campaign.

DEVELOPMENT OF TERRAIN CONTOUR MATCHING ALGORITHM FOR THE AIDED INERTIAL NAVIGATION USING RADIAL BASIS FUNCTIONS

  • Gong, Hyeon-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.229-234
    • /
    • 1998
  • We study on a terrain contour matching algorithm using Radial Basis Functions(RBFs) for aided inertial navigation system for position fixing aircraft, cruise missiles or re-entry vehicles. The parameter optimization technique is used for updating the parameters describing the characteristics of an area with modified Gaussian least square differential correction algorithm and the step size limitation filter according to the amount of updates. We have applied the algorithm for matching a sampled area with a target area supposed that the area data are available from Radar Terrain Sensor(RTS) and Reference Altitude Sensor(RAS)

  • PDF