• Title/Summary/Keyword: Aircraft Load

Search Result 333, Processing Time 0.023 seconds

Estimation of Hydrodynamic Derivatives of Submarine Model by Using VPMM Test (VPMM 시험을 이용한 잠수함 모형의 유체력 미계수 추정)

  • Jung, Jin-Woo;Jeong, Jae-Hun;Kim, In-Gyu;Lee, Seung-Keon
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • In these days, the world has been increasing navy forces such as aircraft carriers and high-tech destroyers etc. and the importance of submarines is being emphasized. Therefore, accurate values of the derivatives in equations of motion are required to control motion of the submarines. Hydrodynamic derivatives were measured by the vertical planar motion mechanism(VPMM) model test. VPMM equipment gave pure heave and pitch motion respectively to the submarine model and the forces and moments were acquired by load cells. As a result, the hydrodynamic derivatives of the submarine are provided through the Fourier analysis of the forces and moments in this paper.

Experimental Investigation on Hydrodynamic Coefficients of Submarine Model by VPMM Test (VPMM 시험을 이용한 수중 잠수함 모형의 동유체력 계수 추정에 관한 연구)

  • Jung, Jin-Woo;Jeong, Jae-Hun;Kim, In-Gyu;Lee, Seung-Keon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.117-118
    • /
    • 2013
  • In these days, the world have been increasing navy forces such as aircraft carriers and high-tech destroyers etc. and the importance of submarines is being emphasized. Therefore, accurate values of the derivatives in equations of motion are required to control motion of the submarines. Hydrodynamic coefficients were measured by the vertical planar motion mechanism(VPMM) model test. VPMM equipment gave pure heave and pitch motion respectively to the submarine model and the forces and moments were acquired by load cells. As a result, the hydrodynamic coefficients of the submarine are provided through the fourier analysis of the forces and moments in this paper.

  • PDF

Experimental Study on the Operating Characteristics of an Environmental Control System for Avionic Equipments (항공장비용 환경제어시스템의 운전특성에 관한 실험적 연구)

  • Park, Hyung-Pil;Kang, Hoon;Chi, Yong-Nam;Choi, Hee-Ju;Byeon, Young-Man;Kim, Young-Jin;Oh, Kwang-Yoon;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.809-816
    • /
    • 2010
  • An environmental control system is installed to dissipate the thermal load in avionic equipments that are mounted under an aircraft. The operating characteristics of the system change with variations in the control parameters. In this study, an environmental control system was designed and built using R-124 by adopting a vapor compression cycle. The operating characteristics of this system were observed by varying the control parameters, such as refrigerant charging amount, opening of the expansion device, compressor rotation speed, and blower rotation speed. The effect of the control parameters on the environmental control system was analyzed and an optimum control method was identified.

A Study on the Characteristics of High Temperature and Mechanisms for Creep Deformation of AZ31 Mg Alloy (AZ31마그네슘 합금의 고온특성 및 크리이프 변형기구에 관한연구)

  • Kang, D.M.;An, J.O.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.96-101
    • /
    • 2005
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, uniaxial tension tests at high temperature and creep tests are done in order to investigate the characteristics of high temperature and mechanisms for creep deformation of AZ31 Mg alloy. Yield stress and ultimate tensile stress decreased with increasing temperature, but elongation increased from results of uniaxial tension test at high temperature. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of 473K to 573K and stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $473K{\sim}493K$ and under the stress level of $62.43{\sim}93.59%MPa$, and again at around the temperature of $553K{\sim}573K$ and under the stress level of $23.42{\sim}39.00MPa$, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal, respectively, and a little low to that of the self diffusion of Mg alloy including aluminum. Also rupture surfaces at high temperature have had bigger dimples than those at lower temperature by SEM.

  • PDF

Test Rig Development for Identification of Rotordynamic Force Coefficients of Squeeze Film Dampers in Automotive Turbocharger Bearing Systems (자동차 터보차저 베어링 시스템에 적용되는 스퀴즈 필름 댐퍼의 동적계수 측정을 위한 실험장치 개발)

  • Hwang, Jisu;Ryu, Keun;Jeung, Sung-Hwa
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2018
  • This paper describes a new test rig for identification of rotordynamic force coefficients of squeeze film dampers (SFDs) in automotive turbochargers (TCs). Prior studies have mainly concentrated on relatively large-sized SFDs used in aircraft engines, turbocompressors, and turbopumps. The main objective of the current study is to propose a test rig for identification of dynamic force coefficients of small-sized SFDs (a journal diameter of ~11 mm). The current test rig consists of a journal, a SFD cartridge, four support rods, an upper structure, a data acquisition (DAQ) system, and an oil circulation unit. The annular gaps between the journal outer surface and SFD cartridge inner surface create SFD film lands. The damper has two parallel film lands separated by a central groove, having an axial length and depth of 3 mm. Each film land has a length of 4 mm with a $40{\mu}m$ radial clearance. The static load and dynamic impact tests identify the structural characteristics (i.e., stiffness and natural frequency) of the journal and assembled test rig. The measurements show good agreement with predictions. The SFD performance data from this test rig will be used to develop innovative TC rotor systems with improved NVH and reliability characteristics incorporating advanced SFD technology.

Slosh & Vibration Qualification Test for Fuel tank of Rotorcraft (헬기용 연료탱크 Slosh & Vibration 인증시험)

  • Jung, Tae-Kyong;Jang, Ki-Won;Jun, Pil-Sun;Ha, Byoung-Geun;Kim, Sung-Chan;Kim, Hyun-Gi;Lee, Gui-Cheon;Shin, Dong-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.713-716
    • /
    • 2010
  • Slosh and vibration effects of fuel inside of fuel tank can be occurred due to the acceleration and flight speed during the rotorcraft flight. It can lead to the failure of internal fuel component and fuel tank skin can be damaged. This is directly related to human survival. Military specification (MIL-DTL-27422D) specifies that stability of aircraft fuel tank and internal component against slosh &vibration load shall be verified through the qualification test procedures. This report shows the establishment of slosh and vibration test facility and KUH fuel tank qualification test result.

  • PDF

Design of Instrumented Pod for Flight Aeroacoustic Environment (비행 공력음향 환경 측정을 위한 계측포드 설계)

  • Jun, Oo-Chul;Kim, Sang-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.536-541
    • /
    • 2012
  • An instrumented pod has been developed to measure the aeroacoustic environment as well as the conventional data such as load, vibration, and aerodynamic heating of fighters during flight tests, confirming to the recently developed external pod design for fighters. This study presents the development of the measurement system in detail, being the first indigenous effort in its kind. The pod was designed to meet the requirements of the MIL-HDBK-1763 and MIL-STD-810 Method 515, which are the base to determine the locations and range of sensors. The Endevco 8510B-2 was selected as the sensor to withstand the harsh environment during the flight tests. In order to assess the integrity of the fabricated pod design, a ground run-up test of a KF-16 has been conducted with the pod installed at Station 5. The test results show that the system works well but the sound level exceeds the predetermined sensor range. The sensor range has been readjusted for flight test performed later.

Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect

  • Chaht, Fouzia Larbi;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Beg, O. Anwar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.425-442
    • /
    • 2015
  • This paper addresses theoretically the bending and buckling behaviors of size-dependent nanobeams made of functionally graded materials (FGMs) including the thickness stretching effect. The size-dependent FGM nanobeam is investigated on the basis of the nonlocal continuum model. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a sinusoidal variation of all displacements through the thickness without using shear correction factor. The material properties of FGM nanobeams are assumed to vary through the thickness according to a power law. The governing equations and the related boundary conditions are derived using the principal of minimum total potential energy. A Navier-type solution is developed for simply-supported boundary conditions, and exact expressions are proposed for the deflections and the buckling load. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and stability responses of the FGM nanobeam are discussed in detail. The study is relevant to nanotechnology deployment in for example aircraft structures.

An Optimal Algorithm for Weight Balancing in a 3D Mesh Architecture (3D 메쉬 구조에서 무게 균형을 위한 최적 알고리즘)

  • So, Sun Sup;Son, Kyung A;Eun, Seongbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1095-1101
    • /
    • 2020
  • Vessels or aircraft should be loaded with containers or cargo to maintain weight balance in order to be stable when navigating the route. The container loading algorithm is known as the NP problem and several heuristic methods have been studied. Containers can be characterized by the uniform volume and weight, which makes it easier to find an optimal loading method. In this paper, we propose an algorithm for weight balance when the volume and weight of an object are uniform. It is assumed that the loading space has a special structure of m * n mesh (where m and n are both odd). In this case, we designed a greedy algorithm and proved that the algorithm is optimal in that it can always find a loading position that maintains a weight balance regardless of the number of objects. Our algorithm can be used in many engineering problems, such as loading algorithms and load balancing problems.

Evaluation of Running Friction Torque of Tapered Roller Bearings Considering Geometric Uncertainty of Roller (롤러의 형상 불확실성을 고려한 테이퍼 롤러 베어링의 구동마찰토크 평가)

  • Jungsoo Park;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.183-189
    • /
    • 2023
  • A bearing is a mechanical component that transmits rotation and supports loads. According to the type of rotating mechanism, bearings are categorized into ball bearings and tapered roller bearings. Tapered roller bearings have higher load-bearing capabilities than ball bearings. They are used in applications where high loads need to be supported, such as wheel bearings for commercial vehicles and trucks, aircraft and high-speed trains, and heavy-duty spindles for heavy machinery. In recent times, the demand for reducing the driving friction torque in automobiles has been increasing owing to the CO2 emission regulations and fuel efficiency requirements. Accordingly, the research on the driving friction torque of bearings has become more essential. Researchers have conducted various studies on the lubrication, friction, and contact in tapered roller bearings. Although researchers have conducted numerous studies on the friction in the lips and on roller misalignment and skew, studies considering the influence of roller shape, specifically roller shape errors including lips, are few. This study investigates the driving friction torque of tapered roller bearings considering roller geometric uncertainties. Initially, the study calculates the driving friction torque of tapered roller bearings when subjected to axial loads and compares it with experimental results. Additionally, it performs Monte Carlo simulations to evaluate the influence of roller geometric uncertainties (i.e., the effects of roller geometric deviations) on the driving friction torque of the bearings. It then analyzes the results of these simulations.