• Title/Summary/Keyword: Aircraft Composites

Search Result 169, Processing Time 0.019 seconds

Development of the Dielectric sensor for the Cure monitoring of the high temperature Composites (고온 복합재료의 경화 모니터링을 위한 유전센서의 개발)

  • 김일영;최진경;최진호;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.22-28
    • /
    • 2000
  • The fiber reinforced composite materials is widely used in aircraft, space structures and robot arms because of high specific strength and high specific modulus. The on-line cure monitoring during the cure process of the composite materials has become an important research area for the better quality and productivity. In this paper, the dielectric circuit of the wheatstone bridge type for measuring the dissipation factor was designed and manufactured. Also, the dielectric sensor for the cure monitoring of the high temperature composites was developed. The residual thermal stresses of the dielectric sensor were analyzed by the finite element method and its dielectric characteristics under high temperature were evaluated. The on-line cure monitoring of the BMI resin was performed using the wheatstone bridge type circuit and developed high-temperature dielectric sensor.

  • PDF

Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization

  • Munoz, Victor;Perrin, Marianne;Pastor, Marie-Laetitia;Welemane, Helene;Cantarel, Arthur;Karama, Moussa
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.249-261
    • /
    • 2015
  • The mechanical characterization of composite materials is nowadays a major interest due to their increasing use in the aeronautic industry. The design of most of these materials is based on their stiffness, which is mainly obtained by means of tensile tests with strain gauge measurement. For thin laminated composites, this classical method requires adequate samples with specific orientation and does not provide all the independent elastic constants. Regarding ultrasonic characterization, especially immersion technique, only one specimen is needed and the entire determination of the stiffness tensor is possible. This paper presents a study of different methods to determine the mechanical properties of transversely isotropic carbon fibre composite materials (gauge and correlation strain measurement during tensile tests, ultrasonic immersion technique). Results are compared to ISO standards and manufacturer data to evaluate the accuracy of these techniques.

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation

  • You, Hangil;Lim, Hyoung Jun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.217-242
    • /
    • 2022
  • This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive law with Eshelby's inclusion theory-based micromechanics model to predict the mechanical behavior of the particle reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites' viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended to predict the nonlinear viscoelastic response of composite materials.

Elastic Analysis of Honeycomb Materials Considering Cell Size and Cell Wall Thickness (셀 크기와 셀벽 두께를 고려한 하니컴 재료의 탄성 해석)

  • 김형구;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.157-160
    • /
    • 2003
  • Honeycomb sandwich composite structures have been widely used in aircraft and military industry because of light weight and high stiffness. Accurate mechanical properties of honeycomb materials are needed for analysis of sandwich composites. In this study, theoretical formula for elastic modulus of honeycomb materials was established considering bending and axial deformations of their walls. Finite-element analysis results were compared with theoretical ones of the longitudinal and transverse moduli of honeycomb materials. Consequently, the mechanical properties of honeycomb materials could be analytically predicted.

  • PDF

Computational analysis of molecular dynamics results in a fuzzy stability system

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.53-71
    • /
    • 2024
  • Owing to these mechanical properties, carbon nanotubes have the potential to be employed in many future devices and nanostructured materials. As an example, high Young modulus accompanied by their low density, makes them a good choice for reinforcing material in composites. Therefore, we empathize and manually derive the results which shows the utilized lemma and criterion are believed effective and efficient for aircraft structural analysis of composite and nonlinear scenarios. To be fair, the experiment by numerical computation and calculations were explained the perfectness of the methodology we provided in the research.

A Study on the Performance Test and Manufacture of the Dielectric Sensor for the Cure Monitoring of the High Temperature Composites (고온 복합재료의 경화 모니터링을 위한 고온 유전센서의 제작 및 성능평가에 관한 연구)

  • 김일영;최진호;이대길
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.30-38
    • /
    • 2001
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the on-line cure monitoring during the cure process of the composite materials has become an important research area for the better quality and productivity. In this paper, the dielectric circuit of the Wheatstone bridge type for measuring the dissipation factor during cure of thermsetting resin matrix composite materials was designed and manufactured. Also, the dielectric sensor for the cure monitoring of high temperature cure composites was developed and tested. The residual thermal stresses of the dielectric sensor during high temperature cure were analyzed by the finite element method and its dielectric characteristics at high temperature cure were analyzed by the finite element method and its dielectric characteristics at high temperature were evaluated. The on-line cure monitoring of the BMI(Bismaleimide) resin was performed using the developed Wheatstone bridge type circuit and the high-temperature dielectric sensor.

  • PDF

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.

Evaluation of Dispersivity and Resistance of the Adhesive Joint According to Dispersion Methods of CNT (CNT 분산 방법에 따른 접착조인트의 저항 및 분산성 평가)

  • Lee, Bong-Nam;Kim, Cheol-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.348-355
    • /
    • 2015
  • NDT (Non Destructive Test) of the adhesive joints is very important because their strengths have greatly affected by the worker's skill and environmental condition. Recently, the electric impedance method in which 1-2 wt% CNT was dispersed in the adhesive and the electric resistance of the adhesive joint was measured was suggested for the defect detection of the adhesive joint. The uniform dispersion of CNT in the electric impedance method is very important to make a constant electric resistance of the adhesive joint and the accuracy of defect detection depends on the uniform dispersion. In this paper, the adhesive joints in which CNT was dispersed in the adhesive by the four dispersion methods were made and their electric resistance were measured. The pre-process and evaporation process of CNT using the ultrasonic method and agitation method was used and the effective dispersion method was suggested. Also, the criteria to evaluate the dispersivity was proposed.

Cause of Fuel Leakage from the Inner Piston Packing of Afterburner Fuel Pump in an Aircraft J85-GE-21 Turbojet Engine (전투기 J85-GE-21 터보제트 엔진 후기 연소기 연료펌프의 내부 피스톤 패킹 연료 누출 원인)

  • Kim, Ik-Sik;Hwang, Young-Ha;Sohn, Kyung-Suk;Lee, Jung-Hun;Kim, Sung-Uk
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • Most of military supersonic aircraft use an afterburner. It plays an important role in performing unusual duties for supersonic flight, takeoff, and combat situations. Recently, repetitive fuel leakage from the inner piston packing rubber of afterburner fuel pump in an aircraft J85-GE-21 turbojet engine has happened. These failures have only happened in one manufacturer's parts of two manufacturers. Thus, the cause of these failures was investigated through the comparative analysis for both the failed and the unfailed with two different manufacturers using various analysis methods. The failure analysis was performed using analysis methods such as swelling or swelling ratio, total sulfur content, polymer identification, loading and surface area of carbon black, and hardness. Consequently, the main cause of this failure was identified to be insufficient loading of carbon black as a reinforcing agent, together with small surface area of carbon black and somewhat low sulfur content.

A Study on 4 Point Bending Strength of Carbon/epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Open Hole Damage (카본/에폭시 면재 및 허니컴 코어 샌드위치 복합재 구조의 구멍 손상에 의한 4점 굽힘 강도 연구)

  • Park, Hyunbum
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.77-81
    • /
    • 2014
  • In this study, it was performed damage assessment and repair of small scale aircraft adopted on composite. This aircraft adopted the sandwich structure to skin of wing. This study aims to investigate the residual strength of sandwich composites with nomex honeycomb core and carbon fiber face sheets after the open hole damage by the experimental investigation. The 4-point bending tests were used to find the bending strength, and the open hole was applied to introduce the simulated damage on the specimen. The bending strength test results after open hole were compared with the results of no damaged specimen test. In addition, The damaged composite structure was repaired using external patch repair method after removing damaged area. After that, this study presents comparison results of the experimental investigation between the damaged and the repaired specimen. It was found that the bending strength of repaired specimen was recovered up to 95% of undamaged specimen.