• Title/Summary/Keyword: Air-bag system

Search Result 83, Processing Time 0.021 seconds

Computational Study of Energy Loss in a Pipe of Refuse Collecting System (쓰레기 관로운송 시스템의 운송에너지 손실에 관한 수치해석적 연구)

  • Lee, Jong-Gil;Choi, Yoon;Hong, Ki-Chul;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.421-426
    • /
    • 2009
  • This paper describes on energy loss in a pipe of refuse collecting system. Analysis energy loss in a pipe is the decisive factor in a design for refuse collecting system. From the analysis energy loss, we can determine the capacity of turbo blower. The flow characteristics in the pipe with the refuse bag are analyzed by three-dimensional Navier-Stokes analysis. The refuse bag is modeled using the actual measurement. We obtain friction factor by changing refuse bag's size and mixing ratio and Reynolds number. And From the result we calculate energy loss by using compressible flow analysis.

  • PDF

Removal Performance of Sticky Paint Aerosol Control System Generated from Small Scale Car Paint Overspray Booth (소형 자동차 페인트 도장부스에서 발생하는 점착성 paint aerosol 처리장치에서 제거성능)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Sohn, Jong-Ryeul;Park, Young-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2015
  • Small scale paint overspray booths are being operated nationwidely, for repair of passenger car body parts. paint aerosols are emitted from the paint overspray booth in operations. In paint overspray booth operations without ventilation system and air pollutants collection unit, it may land on nearby equipment. In this study a removal of sticky paint aerosol for application of the small-scale overspray paint booth. it's cause the surface of filter bag from generated sticky paint aerosol. To remove adhesion of paint aerosol the agglomerating agents are injected and mixed with sticky paint aerosols prior to reach the filter bag. The paint spray rate was set as $10{\pm}5g/min$ from air-atomized spray guns in the spray booth, injection rate of agglomerating was $10{\pm}5g/min$ in the mixing chamber. The filtration velocity including air pollutants varied from 0.2 m/min to 0.4 m/min. Bag cleaning air pressure was set as $5.0kg_f/min$ for detaching dust cake from surface of filter bag. Bag cleaning interval at the filtration velocity of 0.2 m/min was around 3 times longer than that of the 0.4 m/min. The residual pressure drop maintained highest value at the highest filtration velocity. Fractional efficiency of 99.952%~99.971% was possible to maintain for the particle size of 2.5 microns. Total collection efficiency at the filtration velocity of 0.2 m/min was 99.42%. During this study we could confirm high collection efficiency and long cleaning intervals for the test with filtration velocity of 0.2 m/min indicating an optimal value for the given dimensions of the test unit and test operating conditions.

How to enhance the security and operation of Self Bag Drop systems (SBD(Self Bag Drop) Systems의 보안 및 운영 개선 방안에 대한 연구)

  • Kim, Ha-na;Kwon, Pilje;Lee, Kang-seok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.55-65
    • /
    • 2018
  • The SBD systems have made it possible that all boarding procedures are completed by passengers. With the SBD, air tickets can be issued and baggage can be consigned without the help of airline officers. This way, the SBD can improve the passenger circulation speed as well as decrease the time for passengers to wait for check-in, which is connected to the reduction of airlines' operaitonal costs. However, given that the SBD is a new technology, it has potentials to be used as a tool for air terrorism. This study purposes to determine methods to enhance the security and operation of SBD systems. With the aim, this paper investigated the existing literature on SBDs, self-check-in, airport security, air terrorism, risk management, aviation accidents, and information security. In order to compile real-time information about the SBD operations, twelve airports in North America, Europe, and Asia were analyzed based on existing studies on international SBD trends.

Design and Performance Evaluation of the KIST Indoor Smog Chamber (실내 스모그 챔버의 설계 및 성능평가)

  • 배귀남;김민철;이승복;송기범;진현철;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.437-449
    • /
    • 2003
  • A multi-functional indoor smog chamber was designed and evaluated to investigate photochemical or water vapor reaction mechanisms of air pollutants. Various smog chamber experiments could be conducted using ambient air or purified air in this smog chamber. The smog chamber consisted of a housing, a Teflon bag, blacklights, injection ports, sampling ports, and utility facilities. The characteristics of light source, the wall losses of air pollutants, and the quality of purified air were experimentally investigated. The maximum NO$_2$ photolysis rate was 1.10 min$^{-1}$ . In a 2.5-m$^3$ Teflon bag, the wall losses of ambient $O_3$, NO, and NO$_2$ were 1.2~2.4$\times$10$^{-3}$ min$^{-1}$ , 0.7~2.0$\times$10$^{-3}$ min$^{-1}$ , and 0.4~2.0$\times$10$^{-3}$ min$^{-1}$ , respectively. The wall loss of ambient particles ranging 0.05 to 0.2 ${\mu}{\textrm}{m}$ was 1.8~5.4$\times$10$^{-3}$ min$^{-1}$ , which was slightly higher than those of ambient gaseous species. The purified air supply system provided high quality of air with NO$_{x}$ < 1 ppb, and total hydrocarbons < 5 ppb.b.

Emission Characterization of Particulate Matters According to the Types of Wastes from Industrial Waste Incinerator (산업폐기물 소각시설에서 폐기물 유형에 따른 입자상물질의 배출특성)

  • Park, Jeong-Ho;Suh, Jeong-Min;Jo, Jeong-Gu;Ryu, Jae-Yong;Han, Seong-Jong
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1225-1230
    • /
    • 2007
  • The emissions characteristics of particulate matters(PM) according to the types of wastes from industrial waste incinerator of 800 kg/hr treatment capacity were investigated. For this study, the incinerate waste are as follows; waste resin, waste wood, waste urethane, waste gunny, and waste paper. The particulate samples were collected to be emitted in stack and air pollution control(both cyclone and bag filter). In stack, the concentrations of PM were in the range of 2.61 to $26.51 mg/Sm^3$ and the major chemical species were C, Si, Cl, K, Na, Ca in all the wastes. In cyclone fly ash, the mean content of heavy metal were in the order of Fe > Zn > Pb > Cu > Mn > Cr > Ni > Cd > As > Hg and the heavy metal content of waste resin were Zn 34,197.5 mg/kg, Fe 27,587.6 mg/kg, Pb 6,055.8 mg/kg, respectively. In bag filter fly ash, the mean content of heavy metal were in the order of Zn > Pb > Fe > Cu > Mn > Cd > Cr > Ni > As > Hg and the heavy metal content of waste wood were Pb 36,405.2 mg/kg, Fe 15,762.9 mg/kg, Cu 9,989.5 mg/kg, Cd 2,230.1 mg/kg, respectively. Comparing the heavy metal content of both cyclone and bag filter, in cyclone, the Cr, Fe, Ni content were higher than in bag filter and the Cd, Cu, Hg content were lower than in bag filter.

Determination of Volatile Organic Compounds (VOCs) Using Tedlar Bag/Solid-phase Microextraction/Gas Chromatography/Mass Spectrometry (SPME/GC/MS) in Ambient and Workplace Air

  • Lee, Jae-Hwan;Hwang, Seung-Man;Lee, Dai-Woon;Heo, Gwi-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.488-496
    • /
    • 2002
  • SPME techniques have proven to be very useful tools in the analysis of wide VOCs in the air. In this study, we estimated VOCs in ambient and workplace air using a Tedlar ba /SPME/GC/MS system. The calibration curve was set to be linear over the range of 1-30 ppbv. The detection limits ranged from 10 pptv to 0.93 ppbv for all VOCs. Reproducibility of TO-14 target gas mixtures by SPME/GC/MS averaged at 8.8 R.S.D (%). Air toxic VOCs (hazardous air pollutants, HAPs) containing a total of forty halohydrocarbons, aromatics, and haloaro-matic carbons could be analyzed with significant accuracy, detection limit and linearity at low ppbv level. Only reactive VOCs with low molecular weight, such as chloromethane, vinylchloride, ethylchloride and 1,2-dichloro-ethane, yielded relatively poor results using this technique. In ambient air samples, ten VOCs were identified and quantified after external calibration. VOC concentration in ambient and workplace air ranged from 0.04 to 1.85 ppbv. The overall process was successfully applied to identify and quantify VOCs in ambient/workplace air.

Computational Study of Energy Loss in a Pipe of Refuse Collecting System (쓰레기 관로운송 시스템의 운송에너지 손실에 관한 수치해석적 연구)

  • Lee, Jong-Gil;Byun, Jae-Ki;Choi, Young-Don;Choi, Yoon;Hong, Ki-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • This paper describes energy loss in a pipe line of refuse collecting system. Analysis of energy loss in a pipe line is the decisive factor in a design of refuse collecting system. Using the results of energy loss analysis, we can determine the power of turbo-blower. The flow characteristics of the pipe line with refuse bags were analyzed by three-dimensional CFD. The refuse bag is modeled by using the shape obtained from profile measurement. Friction factors were calculated with changing the refuse bag size, mixing ratio and Reynolds number. And drag coefficients were calculated using the CFD results. From the results we can calculate energy loss in a pipe line of refuse collecting system and predict the capacity of turbo-blower.

A Study on the Forming Technology of Multi-stage Aircell Filling Valves (다단 에어셀 충진 밸브성형기술에 관한 연구)

  • Kim, Mi-Suk;Park, Dong-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.57-64
    • /
    • 2017
  • Today, due to the environmental regulations regarding air pollution in the EU, the use of EPS (Styrofoam) as the cushioning material in the packaging industry is decreasing. In effect, air cushioning based cushioning materials are rapidly expanding into the market and replacing EPS, due to their excellent buffering ability and environmental friendliness. This is a new selective filling type air filling material manufacturing technology that affords improvements in the amount of raw materials required, its processing and its aesthetic appearance compared to the conventional air filling cushioning materials. In this study, a multi-stage air cell filling valve molding technology is developed based on selective filling technology, which allows packages to be selectively filled in various forms by applying valve forming structure technology. This multi-stage air cell filling valve molding technology is a technique in which a plurality of injection ports are formed by laminating three layers of films, viz. a first injection film, a valve film, and a second injection film having valve ends. In the conventional technology, a separate external air injection path for injecting air into a plurality of connected air bags is needed. However, in the proposed system, an external air injection path is formed inside the air bag, Due to the lack of need for an injection furnace, the raw material and process are reduced and air is injected and then discharged, while the air bag is reduced in length to 63 ~ 66% of its normal value. The outer surface of the outer air injection path is integrated inside by maintaining the original length of the cross section, while the unnecessary folded air is injected into the interior of the air bag, This smart air filling type cushioning material manufacturing technology constitutes a big improvement over the existing technologies.