• Title/Summary/Keyword: Air-Water Flow

Search Result 1,535, Processing Time 0.028 seconds

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

Chemical Characteristics of Rain Water at Ulsan Industrial Complex Area and Mt. Jiri Area (울산공단지역과 지리산지역 강우의 화학적 특성)

  • Seo, Dong-Jin;Yun, Seok-Lak;Moon, Hyeon-Sik;Lee, Chong-Gyu;Kim, Jong-Kab
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.15-22
    • /
    • 2010
  • This study was carried out to investigate the characteristics of ions in rainwater by stem flow, through fall and rainfall in Pinus thunbergii forest in Ulsan industrial complex area and Mt. Jiri area. pH of rainwater in Ulsan industrial complex area was low as compared with those in Mt. Jiri area. EC of rainwater in Ulsan industrial complex area was mainly high and there was twice difference in stemflow and through fall as compared to Mt. Jiri area. The concentration of major ions in rainwater, especially $Ca^{2+}$ and $Mg^{2+}$ in stem flow were generally high at Ulsan industrial complex area, while anions were high in the order of ${SO_4}^{2-}>{NO_3}^{-}>Cl^-$ in both areas. There was a wide difference in ${SO_4}^{2-}$ concentration in the stem flow between both areas. ${SO_4}^{2-}$ from air pollutants will result into acidification of forest soils and thereafter cause damages on forest ecosystems.

Surface Modification of Recycled Plastic Film-Based Aggregates for Use in Concrete (폐플라스틱 복합필름 기반 콘크리트용 골재의 표면 개질)

  • Kim, Tae Hun;Lee, Jea Uk;Hong, Jin-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.295-302
    • /
    • 2021
  • Surface modification of recycled plastic film-based aggregates is demonstrated to enhance the interaction between aggregates and cement paste. It is shown that the oxygen(O2) atmospheric pressure plasma(APP) treatment leads to a drastic increase in hydrophilicity. In case of the plasma treatment at 100W of RF power, 15/4sccm of O2/Ar flow rate and 30sec of discharging time, the water contact angle on the aggregates surface decreased from 104.5° to 44.0°. In addition, the contact angle of surface modified aggregates kept in air increased with time elapse. Improvement of hydrophilicity can be explained by the formation of new hydrophilic oxygen functional groups which is identified as C-OH, C-O-C, C=O, -COOH by X-ray photoelectron spectroscopy(XPS) analysis and Fourier-transform infrared spectroscopy(FT-IR). Therefore, it can be concluded that the plasma treatment process is an effective method to improve adhesion of the recycled plastic film-based aggregates and cement paste.

Development of Accelerator Control System for Wet Shotcrete Spraying Equipment (습식 숏크리트 뿜칠 장비의 급결제 유량 제어 시스템 개발)

  • Tae-Ho, Kang;Soo-Ho, Chang;Soon-Wook, Choi;Jin-Tae, Kim;Bong-Gyu, Kim;Chulho, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • The wet shotcrete refers to a method in which all materials are mixed and then supplied to the spraying device, compressed air is added to the nozzle, and the spraying speed is improved to spray on the target surface. In order to reproduce the amount of shotcrete used in the wet method in the field and the situation at the laboratory scale, it is essential to control the discharge amount of the equipment. In this study, in order to increase the reproducibility of field conditions at the laboratory scale, a flow control system for shotcrete mortar spraying equipment was developed and applied to the equipment. To verify the developed equipment, a discharge control test using water and mortar was performed. In the developed control system, the discharge was smoothly controlled according to the user input value for the mono pump, but the discharge was not properly controlled according to the input value for the screw pump because of a reducer. When a speed reducer is attached, it is necessary to adjust the operation rate of the screw pump close to the target flow rate by increasing the operation rate of the screw pump while lowering the operation rate of the mono pump.

Change in Water Quality on Upper Stream of Mankyeong River (만경강 상류 지역 수질의 시기별 변화)

  • Moon, Young-Hee;Park, Jong-Min;Son, Jae-Gwon;Kim, Kea-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.252-257
    • /
    • 2001
  • To get the basic information for the water quality improvement and control of water resource at Mankyeong river stream, the water quality in four site of main stream and three site of branch stream at the upper stream were investigated mainly from February to August in 2000. The water temperature was affected by depth, flow rate of the water, and air temperature, and ranged 6.4 to $30.8^{\circ}C$. The pH, DO and BOD values of the water was $5.9{\sim}9.7$, $4.6{\sim}14.50\;mg/L$, and $0.1{\sim}11.8\;mg/L$ range, respectively. The content of total nitrogen, $NO_3-N$ and $NH_4-N$ was $1.19{\sim}10.61\;mg/L$, $1.00{\sim}5.93\;mg/L$, and ND $(non\;detected){\sim}2.79$ mg/L, respectively. The concentration of total phosphorus was ND to 1.14 mg/L. The concentration of Cl ion was $3.5{\sim}196.4\;mg/L$. The content of Fe and Mn was $0.002{\sim}0.100\;mg/L$ and $ND{\sim}0.04\;mg/L$, respectively. The contents of heavy metal Cd, Cu, and Zn were $ND{\sim}0.03\;mg/L$, $ND{\sim}0.05\;mg/L$, and $0.001{\sim}0.17\;mg/L$, respectively. Pb was not detected in all the samples. The pH, total nitrogen contents, and total phosphorus content were frequently exceeded the water quality standard for agriculture. The degree of water pollution was very varied by the sampling place. The water quality was generally polluted in the dry season more than in rainy season. The highest level of water pollution observed in the area of Samyea Bridge among the 7 sites.

  • PDF

Evaluation of Function of Upland Farming for Preventing Flood and Fostering Water Resources (밭농사의 수자원 함양과 홍수조절 기능에 대한 계량화 평가)

  • Hyun, Byung-Keun;Kim, Moo-Sung;Eom, Ki-Cheol;Kang, Ki-Kyung;Yun, Hong-Bae;Seo, Myung-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.163-179
    • /
    • 2003
  • Multifunctionality of agriculture which is not traded on the market now has been an important international issue in that it environmental and public benefits. We carried out to modify and to update the function of upland farming on flood prevention and fostering water resources. Economic values of environmental benefits were evaluated by replacement cost methods. Models to evaluate the function of preventing flood were selected as: (1)precipitation(flood-inducing) - runoff(A), (2) soil depth ${\times}$ soil air phase, (3) precipitation (flood-inducing) - runoff(B), (4) soil depth ${\times}$ effective porosity of soil. Models to estimate the function of fostering water resources were (1) saturated hydraulic conductivity (Ks) ${\times}$ duration of saturation(days) ${\times}$ (1-ratio of water flow directly into river), (2) precipitation ${\times}$ ratio of water fostered by rain resources ${\times}$ (area of upland/total land area), and (3) soil water retention quantity(under standing crop or tree) - SWRQ(in bare soil). Function of preventing flood was $883Mg\;ha^{-1}$ of water per year and 645 million Mg for the whole upland area. Function of fostering water resources was $94.1Mg\;ha^{-1}$ of water per year and 69 million Mg for the whole upland area. The value of flood-preventing function evaluated by replacement cost methods was estimated 1,428 billion won per year as compared to the cost for dam construction. The value of water resource fostering were estimated 8.6 billion won in the price of living water.

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

A Numerical Study for Effective Operation of MSW Incinerator for Waste of High Heating Value by the Addition of Moisture Air (함습공기를 이용한 고발열량 도시폐기물 소각로의 효율적 운전을 위한 수치 해석적 연구)

  • Shin, Mi-Soo;Shin, Na-Ra;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.115-123
    • /
    • 2013
  • Stoker type incinerator is one of the most popular one used as municipal solid waste (MSW) incineration because, in general, it is quite suitable for large capacity and need no preprocessing facility. Nowadays, however, since the combustible portion of incoming MSW increases together with the decrease of the moisture content due to prohibition of directly burying food waste in landfill, the heating value of waste is remarkably increasing in comparison with the early stage of incinerator installation. Consequently, the increased heating value in incinerator operation causes a number of serious problems such as reduction of waste amount to be burned due to the boiler heat capacity together with the significant NO generation in high temperature environment. Therefore, in this study, a series of numerical simulation have been made as parameters of waste amount and the fraction of moisture in air stream in order to investigate optimal operating condition for the resolution of the problems associated with the high heating value of waste mentioned above. In specific, a detailed turbulent reaction flow field calculation with NO model was made for the full scale incinerator of D city. To this end, the injection method of moisturized air as oxidizer was intensively reviewed by the addition of moisture water amount from 10% and 20%. The calculation result, in general, showed that the reduction of maximum flame temperature appears consistently due to the combined effects of the increased specific heat of combustion air and vaporization heat by the addition of water moisture. As a consequence, the generation of NOx concentration was substantially reduced. Further, for the case of 20% moisture amount stream, the afterburner region is quite appropriate in temperature range for the operation of SNCR. This suggests the SNCR facility can be considered for reoperation. which is not in service at all due to the increased heating value of MSW.

Recycle Possibility of the Stone-Dust in Quarry as Subbase Layer Materials of the Road (도로 보조기층재로서 채석장 석분토의 재활용가능성 분석)

  • Kim, Kyeong-Su;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.279-287
    • /
    • 2007
  • An ore of stone obtained from quarry lose its about 60% such as the muck and the stone-dust during the process of making the architectural block, the crushed aggregate and so on. A part of the muck is only reutilized for the crushed aggregate as road pavement materials, while the most of the muck in the shape of powder is mixed with water and then it is deposited in a sludge tank. The muck in the shape of powder is called the stone-dust. If the stone-dust is discharged and sprayed, an ecosystem will have terrible damage because the seepage of surface water, the flow of ground water and the movement of air are not occurred smoothly by packing the void of soils. As the Waste Management Law (2003) in Korea, the stone-dust is sorted out the industrial waste and the most of that is dumped in ground. Therefore, the establishments of an efficient recycling plan are necessary through the improvement of engineering properties of the stone-dust. To investigate the possibility of recycle and improvement for the stone-dust, the stone-dust and natural soils are sampled from six quarries in Korea. The various soil tests are performed by use of the mixed soils with the stone-dust content ratio. As the result of various soil tests, the recycle possibility of the stone-dust is analyzed as subbase layer materials of the roads.

Effects of Low Pressure and Atmospheric Pressure Plasma Treatment on Contact Angle of Polycarbonate Surface (저압 및 대기압 플라즈마 처리를 통한 폴리카보네이트의 접촉각 변화특성 비교)

  • Won, Dong Su;Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • The effect of plasma treatment on surface characteristics of polycarbonate (PC) films was investigated using low pressure plasma and atmospheric pressure plasma with oxygen and argon. Untreated PC has a contact angle of $82.31^{\circ}$ with de-ionized water which reduced to $9.17^{\circ}$ as the lowest value after being treated with a low pressure plasma treatment with oxygen. Increase of delivered powers such as RF and AC with a high frequency and gas flow rates was not effective to reduce contact angles dramatically but gave the trend of reducing gradually. The surface of PC treated with plasma shows a low contact angle but the contact angle increases rapidly according to the exposure time in air ambient. Oxygen plasma was more effective to generate the polar functional group regardless of the type of plasma. Conclusively, a low plasma treatment with oxygen is more recommendable when the hydrophilic surface of PC is required.