• Title/Summary/Keyword: Air purification plant

Search Result 46, Processing Time 0.028 seconds

A Study on the Velocity Profiles and Pressure Distributions in Ejector Linking Inhale Duct (흡입관이 부착된 이젝터의 속도분포와 압력분포 연구)

  • Lee Heang-Nam;Park Gil-Moon;Lee Duck-Gu;Sul Jae-Lim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.488-494
    • /
    • 2005
  • The ejector is used to obtain a vacuum state, and it has been applied to a lot of industry field such as a heat engine, a fluid instrument power plant. a food industry, an environment industry etc., because there is no problem even it is mixed with any kind of liquid, gas. and solid. The flow characteristics in the ejector was investigated by a PIV and a CFD. The agreement between numerical analysis and experiment shows the validity of this study and the results of this study would be useful to the engineers who design for the flow systems for heating. ventilation. air conditioning and wastewater purification plants.

Water Purification Using Hollow Fiber Microfiltration Membrane (막분리(膜分離)를 이용(利用)한 수도원수(水道原水)의 고도처리(高度處理)에 관한 연구(硏究))

  • Cho, Bong Yeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 1993
  • Constant rate permeat experiments using polyethylene hollow fiber membranes were conducted in order to treat dam water for potable purposes. The experiments consisted of two series. One series consisted of six bench scale apparatuses, each having a $0.4m^2$ nominal permeat area, which were applied in determining the optimum operating conditions. The other series was comprised of two pilot scale plant, each having a $40m^2$ nominal permeat area. Both series were operated for six months. Coagulant was not used in any of the experiments. To suppress an increase in differential pressure between the inlet and outlet of the membrane, a hydrophilic membrane was found to be better than a hydrophobic membrane. Also, permeat flux should not be more than 0.03m/h, and air bubbling-washing for 1 minute should be conducted at 180 minutes intervals or less.

  • PDF

Assessment of absorption ability of air pollutant on forest in Gongju-city

  • Eom, Ji-Young;Jeong, Seok-Hee;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.12
    • /
    • pp.328-335
    • /
    • 2017
  • Background: Some researchers have attempted to evaluate the ecological function of various additional services, away from the main point of view on the timber production of Korean forests. However, basic data, evaluation models, or studies on the absorption of air pollutants related to major plant communities in Korea are very rare. Therefore, we evaluated the functional value of the forest ecosystem in Gongju-city. Plantation manual for air purification, supplied from the Ministry of Environment in Japan, was referred to process and method for assessment of air pollutant absorption. Results: Gross primary production was calculated about average 18.2 t/ha/year. It was a relatively low value in forests mixed with deciduous broad and evergreen coniferous compared to pure coniferous forest. Net primary production was the highest value in deciduous coniferous and was the lowest value in mixed forest with deciduous broad and evergreen broad. And the mean sequestration amount of each air pollutant per unit area per year assessed from gross primary production and concentration of gas was the highest with 75.81 kg/ha/year in $O_3$ and was 16.87 and 6.04 kg/ha/year in $NO_2$ and $SO_2$, respectively. In addition, total amounts of $CO_2$ absorption and $O_2$ production were 716,045 t $CO_2$/year and 520,760 t $O_2$/year in all forest vegetation in Gongju-city. Conclusions: In this study, we evaluated the absorption ability of air pollutant in 2014 on forest in Gongju-city area. Gongju-city has the broad mountain area about 70.3%, and area of deciduous broad leaves forest was established the broadest with 47.4% of genus Quercus. Pg was calculated about average 18.2 t/ha/year. The mean sequestration amount of each air pollutant per unit area per year assessed from Pg and $C_{gas}$ was the highest with 75.81 kg/ha/year in $O_3$ and were 16.87 and 6.04 kg/ha/year in $NO_2$ and $SO_2$, respectively. Absorption rates of $O_3$, $NO_2$, and $SO_2$ were the highest in evergreen coniferous forest about $14.87kgO_3/ha/year$, $3.30kgNO_2/ha/year$, $1.18kgSO_2/ha/year$, and the lowest were $5.95kgO_3/ha/year$, $1.32kgNO_2/ha/year$, and $0.47kgSO_2/ha/year$ in deciduous broad forest. In conclusion, it was evaluated that Japanese model is suitable for estimating air pollutants in Japan to Korean vegetation. However, in Korea, there is a very limited basic data needed to assess the ability of forests to absorption of air pollutants. In this study, the accuracy of a calculated value is not high because the basic data of trees with similar life form are used in evaluation.

A Study on the Filed Application of Environmental Friendly Porous Concrete For Planting (환경친화 식생용 포러스콘크리트의 현장적용성에 관한 연구)

  • Kim Jeong Hwan;Lee Nam Ik;Lee Young Hee;Kwon Hyuk Jun;Lee Jun;Park Seung Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.769-772
    • /
    • 2005
  • The river environments of many streams in korea have been deteriorate through the rapid industrialization and urbanization since the 1960s. In Germany and Japan, on the other hand, much efforts on the research and project have been made for the restoration of the deteriorated streams to close-to-nature. in order to restore the deteriorated streams, therefore, it is necessary to investigate such advanced technologies and materials. In view of this requirement, various research paths are being taken focusing on coarse aggregates to make multi-functional porous concrete having continuous voids so as to improve water and air permeability, acoustic absorption, water purification, and applicability to vegetation. The Purpose of this study is to investigate the method for recovery of the environment in the streams area using porous concrete block. the porous concrete block applies for test in the cheonggae-cheon have been monitored planting during six month. after 6 months, plant grows flourishing and reconstructed in state such as nature rivers.

  • PDF

A Study on the Filed application of Environmental Friendly Porous Concrete For Planting (환경친화 식생용 포러스콘크리트의 현장적용성에 관한 연구 II)

  • Kim, Jeong-Hwan;Lee, Nam-Ik;Lee, Young-Hee;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.829-832
    • /
    • 2006
  • The river environments of many streams in korea have been deteriorate through the rapid industrialization and urbanization since the 1960s. In korea, on the other hand, much efforts on the research and project have been made for the restoration of the deteriorated streams to close-to-nature. in order to restore the deteriorated streams, therefore, it is necessary to investigate such advanced technologies and materials. In view of this requirement, various research paths are being taken focusing on coarse aggregates to make multi-functional porous concrete having continuous voids so as to improve water and air permeability, acoustic absorption, water purification, and applicability to vegetation. The Purpose of this study is to investigate the method for recovery of the environment in the streams area using porous concrete painting block. the P.O.C block applies for test in the kyungan-cheon have been monitored planting during six month. after 6 months, plant grows flourishing and reconstructed in state such as nature rivers.

  • PDF

A Review of Technology Development Trend for Hydrogen and Syngas Production with Coke Oven Gas (코크스 오븐 가스(COG)를 이용한 수소 및 합성가스 제조 기술 개발 동향 분석)

  • Choi, Jong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1247-1260
    • /
    • 2022
  • The steel industry accounts for about 5% of the total annual global energy consumption and more than 6% of the total anthropogenic carbon dioxide emissions. Therefore, there is a need to increase energy efficiency and reduce greenhouse gas emissions in these industries. The utilization of coke oven gas, a byproduct of the coke plant, is one of the main ways to achieve this goal. Coke oven gas used as a fuel in many steelmaking process is a hydrogen-rich gas with high energy potential, but it is commonly used as a heat source and is even released directly into the air after combustion reactions. In order to solve such resource waste and energy inefficiency, several alternatives have recently been proposed, such as separating and refining hydrogen directly from coke oven gas or converting it to syngas. Therefore, in this study, recent research trends on the separation and purification of hydrogen from coke oven gas and the production of syngas were introduced.

House-plant placement for indoor air purification and health benefits on asthmatics

  • Kim, Ho-Hyun;Yang, Ji-Yeon;Lee, Jae-Young;Park, Jung-Won;Kim, Kwang-Jin;Lim, Byung-Seo;Lee, Geon-Woo;Lee, Si-Eun;Shin, Dong-Chun;Lim, Young-Wook
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.14.1-14.8
    • /
    • 2014
  • Objectives Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. Methods The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with indoor plants and went through the latter observation term without any indoor plants. Results The household of continuation showed a continual decrease in the indoor concentrations of volatile organic compounds (VOCs) during the entire observation period, but the household of withdrawal performed an increase in the indoor concentrations of VOCs, except formaldehyde and toluene during the latter observation term after the decrease during the former observation term. Peak expiratory flow rate (PEFR) increased in the households of continuation with the value of 13.9 L/min in the morning and 20.6 L/min in the evening, but decreased in the households of withdrawal with the value of -24.7 L/min in the morning and -30.2 L/min in the evening in the first experimental season. All of the households exhibited a decrease in the value of PEFR in the second experimental season. Conclusions Limitations to the generalizability of findings regarding the presence of plants indoors can be seen as a more general expression of such a benefit of human-environment relations.

Effects of Urban Greenspace on Microclimate Amelioration, $CO_2$ Sequestration and Eire Obstruction (도시녹지의 미기후개선, $CO_2$흡수 및 화재방지의 효과)

  • ;Yoshiteru Nojima
    • Korean Journal of Plant Resources
    • /
    • v.13 no.3
    • /
    • pp.162-170
    • /
    • 2000
  • This study quantified the effects of urban greenspace on microclimate amelioration and atmospheric $CO_2$ reduction for several residential districts selected in Korea and Japan. The study also explored fire obstruction by urban trees to develop systematic planting guidelines. Transpiration by a Zelkova serrata tree (diameter at breast height: 15 cm) in a day of August equaled cooling effect of about 3 air conditioners running for 12 hours. Average air temperature for the growing season was 0.5$^{\circ}C$ and 1.2$^{\circ}C$ cooler, respectively, in districts with 12% and 22% cover of woody plants than in a district with no vegetation. Annual $CO_2$ uptake and $O_2$ production by woody plants were 3 times greater in a district which was 2 times higher in their cover. Woody plants played, in a district with their 22% cover, an important role through offsetting total $CO_2$ emission from the district by about 3% annually, and through producing 10% of annual $O_2$ requirement by all residents within the district. Appropriate planning strategies of residential greenspace, including species selection, planting layout, greenspace enlargement, and maintenance were suggested to improve microclimate amelioration, air purification, and fire obstruction.

  • PDF

Particulate Matter Removal of Indoor Plants, Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. according to Light Intensity (광량에 따른 실내식물 디펜바키아와 스파티필럼의 미세먼지 제거능)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.62-68
    • /
    • 2018
  • This study investigated the effect of light intensity on the removal of particulate matter by Dieffenbachia amoena 'Marianne' and Spathiphyllum spp.. An acrylic chamber ($600{\times}800{\times}1200mm$, $L{\times}W{\times}H$) modeled as an indoor space and a green bio-filter ($495{\times}495{\times}1000mm$, $L{\times}W{\times}H$) as an air purification device were made of acrylic. The removal of particulate matter PM10 and PM1, the photosynthetic rate, stomatal conductance, and number of stomata of Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. were measured according to three different levels of light intensity (0, 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$). Regarding the length of time taken for PM10 to reach $1{\mu}g$, the Dieffenbachia amoena 'Marianne' showed a significant difference according to the presence or absence of light, and there was no significant difference shown between light intensity of 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. As for the Spathiphyllum spp., there was no significant difference between 0 and $30{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$, while a significant difference was shown at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. After 90 minutes, the PM1, PM10, and $CO_2$ residuals of the Spathiphyllum spp. were lowest at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. The remaining amount of PM1 and PM10 was lower with the Spathiphyllum spp. than with the Dieffenbachia amoena 'Marianne', even at $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. With both plants, the higher the light intensity, the higher the photosynthetic rate, while the stomatal conductance did not show any significant difference. Spathiphyllum spp. showed a higher photosynthetic rate and stomatal conductance and a greater number of stomata than Dieffenbachia amoena 'Marianne', and stomata were observed in both the front and back sides of the leaves. The air purification effect of Spathiphyllum spp. is considered to be better than Dieffenbachia amoena 'Marianne' at the same light intensity due to such plant characteristics. Therefore, in order to select effective indoor plants for the removal of particulate contamination in an indoor space, the characteristics of plants such as the photosynthetic rate and the number and arrangement of stomata according to indoor light intensity should be considered.

Development of Land Fill Gas(LFG)-MGT Power Generation and Green House Design Technology (쓰레기 매립지 MGT 발전 및 유리온실 설계기술개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • The high fuel flexibility of Micro Gas Turbine(MGT) has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and landfill as a fuel for gas turbines has increased. We researched the influence of firing landfill gas(LFG) on the performance and operating characteristics of a micro gas turbine combined heat and power system. $CH_4$ and $CO_2$ simultaneous recovery process has been developed for field plant scale to provide an isothermal, low operating cost method for carrying out the contaminants removal in Land Fill Gas(LFG) by liquid phase catalyst for introduce into the green house for the purpose of $CO_2$ rich cultivation of the plants. Methane purification and carbon dioxide stripping by muti panel autocirculation bubble lift column reactor utilizing Fe-EDTA was conducted for evaluate optimum conditions for land fill gas. Based on inflow rate of LFG as 0.207 $m^3$/min, 5.5 kg/$cm^2$, we designed reactor system for 70% $CH_4$ and 27% $CO_2$ gas introduce into MGT system with $H_2S$ 99% removal efficiency. A green house designed for four different carbon dioxide concentration from ambient air to 1500 ppm by utilizing the exhaust gas and hot water from MGT system.