Browse > Article
http://dx.doi.org/10.21289/KSIC.2022.25.6.1247

A Review of Technology Development Trend for Hydrogen and Syngas Production with Coke Oven Gas  

Choi, Jong-Ho (Dept. of Chemical Engineering, Kyungil University)
Publication Information
Journal of the Korean Society of Industry Convergence / v.25, no.6_3, 2022 , pp. 1247-1260 More about this Journal
Abstract
The steel industry accounts for about 5% of the total annual global energy consumption and more than 6% of the total anthropogenic carbon dioxide emissions. Therefore, there is a need to increase energy efficiency and reduce greenhouse gas emissions in these industries. The utilization of coke oven gas, a byproduct of the coke plant, is one of the main ways to achieve this goal. Coke oven gas used as a fuel in many steelmaking process is a hydrogen-rich gas with high energy potential, but it is commonly used as a heat source and is even released directly into the air after combustion reactions. In order to solve such resource waste and energy inefficiency, several alternatives have recently been proposed, such as separating and refining hydrogen directly from coke oven gas or converting it to syngas. Therefore, in this study, recent research trends on the separation and purification of hydrogen from coke oven gas and the production of syngas were introduced.
Keywords
Coke Oven Gas (COG); Hydrogen; Syngas; Pressure Swing Adsorption; Membrane Separation; Reforming;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Dominguez, Y. Fernandez, B. Fidalgo, J. J. Pis, and J. A. Menendez, "Biogas to syngas by microwave-assisted dry reforming in the presence of char", Energy Fuels, 21 2066-2071 (2007).   DOI
2 J. M. Bermudez, A. Arenillas, R. Luque, and J. A. Menendez, "An overview of novel technologies to valorise coke oven gas surplus", Fuel Process. Technol, 110, 150-159 (2013)   DOI
3 J. Park, L. Young, J. Kim, and Y.-S. Yoon, "Efficiency, economic, energy, and safety (3ES) analyses on different configurations of MDEA absorption process for coke oven gas desulfurization", CEJ Advances, 10, 100281 (2022).
4 J. Yang, C. -H. Lee, "Adsorption dynamics of a layered bed PSA for H2 recovery from coke oven gas", AICHE Journal, 44, 1325-1334 (1998).   DOI
5 H. Ahn, C. -H. Lee, B. Seo, J. Yang and K. Baek, "Backfill cycle of a layered bed H2 PSA process", Adsorption, 5 419-433 (1999).   DOI
6 L. Carneiro, S. Fernandes, G. W. Neto, R. P. Brito, and K. Brito, "Improving H2S removal in the coke oven gas purification process", Sep. Purif. Technol., 257, (2021) 117862   DOI
7 J. Zhang, X. Zhang, Z. Chen, and L. Li, "Thermodynamic and kinetic model of reforming coke-oven gas with steam", Energy, 35, 3103-3108 (2010).   DOI
8 W. Liu, H Zuo, J. Wang, Q Xue, B. Ren, and F Yang, "The production and application of hydrogen in steel industry", Int. J Hydrogen Energy, 46, 10548-10569 (2021).   DOI
9 M. A. Pena, J.P. Gomez, and J. L. G. Fierro, "New catalytic routes for syngas and hydrogen production", Appl. Catal. A, 144, 7-57 (1996).   DOI
10 S. Richlen, "Using coke oven gas in a blast furnace saves over 6$ million annually at a steel mill, Technical Case Study", U.S. Department of Energy, 2000, https://p2infohouse.org/ref/24/23906.pdf
11 M. -C. Fang, H.-J. Pan, J. D. Ward , H. -Y. Lee, C. -T. Hsieh, S. -C. Lin, Y. -C. Hsieh, C. -L. Lee, T. -H. Huang, and W. -T. Chou, "Modeling and analysis for cleaner operation of a process to remove BTX from coke oven gas", Sep. Purif. Technol., 302, 122103 (2022).   DOI
12 J. J. Hwang and W. R. Chang, "Life-cycle analysis of greenhouse gas emission and energy efficiency of hydrogen fuel cell scooters", Int, J. Hydrog. Energy, 35, 11947-11956 (2010).   DOI
13 F. G. Wiessner, "Basics and industrial applications of pressure swing adsorption (PSA), the modern way to separate gas", Gas Sep. Purif., 2, 115-119 (1988).   DOI
14 T. Otowa, A. Shiraki, Y. Ishigaki, and S. Nishida, "Methane adsorption as a calorie upgrading PSA in the SNG process", Gas Sep. Purif., 3, 139-142 (1989).   DOI
15 C. H. Lee, J. Yang, and H. Ahn, "Effects of carbon-to-zeolite ratio on layered bed H2 PSA for coke oven gas", AICHE Journal, 45, 535-545 (1999).   DOI
16 B. Park, S. Park, J. Park, and H. Kim, "Development of by-product gas amplication and reforming technology in hybrid integrated iron and steel mills", Proceedings of Fall Meeting of The Korean Hydrogen and New Energy Society, October 20-22, JeJu, Korea (2021).
17 H. Brueggendick, E. Richter, K. Knoblauch, and H. Juentgen, "Modelling of adsorption in cyclic operation of a PSA plant for H2 recovery", Chem. Eng. Technol., 10, 390-398 (1987).   DOI
18 C. Wang, M. Larsson, C. Ryman, C.E. Grip, J.O. Wikstrom, A. Johnsson, and J. Engdahl, "A model on CO2 emission reduction in integrated steelmaking by optimization methods", Int. J. Energy Res., 32, 1092-1106 (2008).   DOI
19 A. Hasanbeigi, M. Arens and L. Price, "Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: a technical review". Renew. Sustain. Energy Rev., 33, 645-658 (2014).   DOI
20 F. Joseck, M. Wang, and Y. Wu, "Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills", Int. J Hydrogen Energy, 33, 1445-1454 (2008).   DOI
21 J. M. Bermudez, A. Arenillas, and J. A. Menendez, "Syngas from CO2 reforming of coke oven gas: synergetic effect of activated carbon/ Ni-γAl2O3 catalyst", Int. J. Hydrog. Energy, 36, 13361-13368 (2011).   DOI
22 A. T. Ashcroft, A. K. Cheetham, J. S. Foord, M. L. H. Green, C. P. Grey, A. J. Murrell, and P. D. F. Vernon, "Selective oxidation of methane to synthesis gas using transition metal catalysts", Nature, 344, 319-321 (1990).   DOI
23 B. Li, G. He, X. Jiang, Y. Dai and X. Ruan, "Pressure swing adsorption /membrane hybrid processes for hydrogen purification with a high recovery", Front. Chem. Sci. Eng., 10, 255-264 (2016).   DOI
24 J. Shen, Z. Z. Wang, H. W. Yang, and R. S. Yao, "A new technology for producing hydrogen and adjustable ratio syngas from coke oven gas", Energy Fuels, 21, 3588-3592 (2007).   DOI
25 S. Sircar, W. E. Waldron, M. B. Rao, and M. Anand, "Hydrogen production by hybrid SMR-PSA-SSF membrane system", Sep. Purif. Technol., 17, 11-20 (1999).   DOI
26 D. D. Nikolic, and E. S. Kikkinides, "Modelling and optimization of hybrid PSA/membrane separation processes". Adsorption, 21, 283-305 (2015).   DOI
27 R. Baker, Chapter 8 Gas separation, Membrane Technology and Applications, Wiley, 2004.
28 D. Xiang, T. Jin, X. Lei, S. Liu, Y. Jiang, Z. Dong, Q. Tao, and Y. Cao, "The high efficient synthesis of natural gas from a joint- feedstock of coke oven gas and pulverized coke via a chemical looping combustion scheme", Appl. Energy, 212, 944-954 (2018)   DOI
29 K. Chang, Q. Li, and Q. Li, "Refrigeration cycle for cryogenic separation of hydrogen from coke oven gas", Front. Energ. Power Eng. China, 2, 484-488 (2008).   DOI
30 Q. Sun, J. Dong, X. Guo, A. Liu, and J. Zhang, "Recovery of hydrogen from coke-oven gas by forming hydrate", Ind. Eng. Chem. Res., 51, 6205-6211 (2012).   DOI
31 A. Drift and H. Boerrigter, "Synthesis gas from biomass for fuels and chemicals", Stockholm, Sweden, ECN- report, ECN-C-06-001 (2006).
32 M. Onozaki, K. Watanabe, T. Hashimoto, H. Saegusa, Y. Katayama, "Hydrogen production by the partial oxidation and steam reforming of tar from hot coke oven gas", Fuel 85, 143-149 (2006)   DOI
33 S. Sircar, and T. C. Golden, "Purification of hydrogen by pressure swing adsorption", Sep. Purif. Technol., 35, 667-687 (2000).
34 J. Yang, C. H. Lee, and J. W. Chang, "Separation of hydrogen mixtures by a two-bed pressure swing adsorption process using zeolite 5A", Ind. Eng. Chem. Res., 36, 2789-2798 (1997).   DOI
35 H. J. Schroter, "Carbon molecular sieves for gas separation processes", Gas Sep. Purif., 7, 247-251 (1993).   DOI
36 P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: a review/state of the art", Ind . Eng. Chem. Res., 48, 4638-4663 (2009).   DOI
37 J. -H. Kim, J. -Y, Jeon, B. -R. Park, and H. -C, Kang, "Method and system for separation and recovery of hydrogen from coke oven gas in the steel industry", Korea Patent, 10-2329389, (2021).
38 I. Wender, "Reactions of synthesis gas", Fuel Process. Technol., 48, 189-297 (1996).   DOI
39 J. Xu and G. F. Froment, "Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics", AICHE Journal, 35, 88-96 (1989).   DOI
40 Z. Yang, Y. Zhang, X. Wang, X. Lu, and W. Ding, "Steam reforming of coke oven gas for hydrogen production over a NiO/MgO solid solution catalyst", Energy Fuels, 24, 785-788 (2010).   DOI
41 J. Y. Zhang, J. M. Zhou, and H. J. Yan, "Kinetic model on coke oven gas with steam reforming", J. Cent. South Univ. Technol., 15, 127-131 (2008).   DOI
42 J. R. Rostrup-Nielsen, "Catalytic steam reforming", Catal. Sci. Technol., 5, 1-117 (1984)
43 B. Yue, X. Wang, X. Ai, J. Yang, L. Li, X. Lu, and W. Ding, "Catalytic reforming of model tar compounds from hot coke oven gas with low steam/carbon ratio over Ni/MgO-Al2O3 catalysts", Fuel Process. Technol., 91, 1098-1104 (2010).   DOI
44 B. Fidalgo, L. Zubizarreta, J. M. Bermudez, A. Arenillas, and J. A. Menendez, "Synthesis of carbon- supported nickel catalysts for the dry reforming of CH4", Fuel Process. Technol., 91, 765-769 (2010).   DOI
45 K. Norinaga, H. Yatabe, M. Matsuoka, and J. I. Hayashi, "Application of an existing detailed chemical kinetic model to a practical system of hot coke oven gas reforming by noncatalytic partial oxidation", Ind. Eng. Chem. Res., 49, 10565-10571 (2010).   DOI
46 W. H. Chen, M. R. Lin, T. S. Leu, and S. W. Du, "An evaluation of hydrogen production from the perspective of using blast furnace gas and coke oven gas as feedstocks", Int. J. Hydrog. Energy, 36, 11727-11737 (2011).   DOI
47 Y. Zhang, Q. Li, P. Shen, Y. Liu, Z. Yang, W. Ding, and X. Lu, "Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor", Int. J. Hydrog. Energy, 33, 3311-3319 (2008).   DOI
48 J. R. Rostrup-Nielsen, "New aspects of syngas production and use", Catal.Today, 63, 159-164 (2000).   DOI
49 L. Li, K. Morishita, and T. Takarada, "Conversion of hot coke oven gas into light fuel gas over Ni/Al2O3 catalyst", J. Chem. Eng. Jpn., 39, 461-468 (2006).   DOI
50 H. Cheng, B. Yue, X. Wang, X. Lu, W. Ding, "Hydrogen production from simulated hot coke oven gas by catalytic reforming over Ni/Mg(Al)O catalysts", J. Nat. Gas Chem., 18, 225-231 (2009).   DOI
51 H. C. Dibbern, P. Olesen, J. R. RostrupNielsen, P.B. Tottrup, and N.R. Udengaard, "Make low H2/CO syngas using sulfur passivated reforming", Hydrocarb. Process., 65, 71-74 (1986).
52 M. C. J. Brad ford and M. A. Vannice, "Catalytic reforming of methane with carbon dioxide over nickel catalysts, I. Catalyst characterization and activity", Appl. Catal. A-Gen., 142, 73-96 (1996).   DOI
53 S. Wang and G. Q. Lu, "Reforming of methane with carbon dioxide over Ni/Al2O3 catalysts: effect of nickel precursor", Appl. Catal. A-Gen., 169, 271-280 (1998).   DOI
54 N. R. Ud engaard , J. H. B. Hansen, D. C. Hanson, and J. A. Stal, "Sulfur passivated reforming process lowers syngas H2/CO ratio", Oil Gas J., 90, 62-67 (1992).
55 H. Ahn, J. Yang, and C. H. Lee, "Effects of feed composition of coke oven gas on a layered bed H2 PSA process", Adsorption, 7, 339-356 (2001).   DOI
56 Y. Zhang, J. Liu, W.Ding, and X. Lu, "Performance of an oxygen-permeable membrane reactor for partial oxidation of methane in coke oven gas to syngas", Fuel, 90 324-330 (2011).   DOI
57 H. Cheng, X. Lu, Y. Zhang, and W. Ding, "Hydrogen production by reforming of simulated hot coke oven gas over nickel catalysts promoted with lanthanum and cerium in a membrane reactor", Energy Fuels, 23, 3119-3125 (2009).   DOI
58 B. C. Enger, R. Lodeng, and A. Holmen, "A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts", Appl. Catal. A, 346, 1-27 (2008).   DOI
59 A. P. E. York, T. Xiao, and M. L. H. Green, "Brief overview of the partial oxidation of methane to synthesis gas", Top. Catal., 22, 345-358 (2003).   DOI
60 K. Miura, M. Kawase, H. Nakagawa, R. Ashida, T. Nakai, and T. Ishikawa, "Conversion of tar in hot coke oven gas by pyrolysis and steam reforming", J. Chem. Eng. Jpn., 36, 735-741 (2003)   DOI
61 Y. B. Li, R. Xiao, and B. Jin, "Thermod ynamic equilibrium calculations for the reforming of coke oven gas with gasification gas", Chem. Eng, Technol., 30, 91-98 (2007).   DOI