• 제목/요약/키워드: Air intake system

검색결과 258건 처리시간 0.022초

Influence of intake runner cross section design on the engine performance parameters of a four stroke, naturally aspirated carbureted SI engine

  • Singh, Somendra Pratap;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 2015
  • The current scenario of the transportation sector reflects the urgent need to address issues such as depletion of traditional fuel reserves and ever growing pollution levels. Researchers around the world are focussing on alternatives as well as optimisation of currently employed devices to reduce the pollution levels generated by the commonly used fuels. One such optimisation involves the study of air flow within the intake manifolds of SI engines. It is a well-known fact that alterations in the air manifolds of engines have a significant impact on the engine performance parameters, fuel consumption and emission levels. Previous works have demonstrated the impacts of runner lengths, diameter, plenum volume, taper angle of distribution manifolds and other factors on in-cylinder fluid motion and engine performance. However, a static setup provides an optimal configuration only at a specific engine speed. This paper aims to investigate the variations in the same parameters on a four stroke, naturally aspirated single cylinder SI engine through varying the cross section design over the intake runner with the aid of Computational Fluid Dynamics. The system consists of segments that form the intake runner with projections on the inside that allow various permutations of the intake runner segments. The various configurations provide the optimised fluid flow characteristics within the intake manifold at specific engine speed intervals. The variations such as turbulence, air fuel mixing are analysed using the three dimensional CFD software FLUENT. The results can be used further for developing an automated or manually adjustable intake manifold.

LPi 시스템 자동차의 인젝터, 공회전 액추에이터 및 개스킷 고장사례 연구 (Study for Failure Examples of Injector, Idle Speed Actuator and Gasket in LPi System Vehicle)

  • 이일권;조승현;김한구;김승철
    • 한국가스학회지
    • /
    • 제16권3호
    • /
    • pp.48-53
    • /
    • 2012
  • 이 논문의 목적은 LPG 자동차의 액상 분사시스템에 관련된 고장사례를 연구하는 것이다. LPi 분사시스템인 인젝터를 점검한 결과, 인젝터에 카본이 누적되어 운전 중에 간헐적으로 연료를 분사하는 인젝터의 미세한 홀을 막아 연비를 5% 정도 떨어뜨리는 것으로 확인되었다. 엔진의 공회전을 조절하는 시스템인 공회전 조절장치 부품과 엔진에 공기를 공급하는 시스템인 스로틀 보디에 카본이 퇴적되어 공기의 흐름을 간섭함으로써 연비가 7% 악화된 것을 확인되었다. 엔진의 흡기 매니폴드 개스킷의 일부가 찢어져, 실린더 헤드와 실린더 블록의 밀착성이 약화되어 흡기행정에서 외부의 공기가 이 틈새로 간헐적으로 유입되면서 증가된 공기량만큼 연료량의 증가를 가져와 엔진의 회전수가 증가하여 부조화 현상이 발생되어 정상적인 상태보다 연비가 3% 정도 악화된 것으로 확인되었다. 이러한 고장사례는 운전중에 엔진의 출력 성능을 떨어뜨리고, 자동차의 연비를 악화시키는 요인이 된다. 따라서 품질확보에 철저하게 대처하여 고장현상을 최소화 하여야 할 것으로 판단된다.

유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구 (A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate)

  • 조현성;김철호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.378-383
    • /
    • 2013
  • 가솔린엔진의 출력제어를 위해 나비형(butterfly-type) 스로틀밸브가 응용되고 있다. 그러나 기존의 나비형 스로틀밸브는 밸브 후방에서 발생하는 강한 와류현상으로 인해 매우 큰 흡입 유로의 저항을 유발하게 된다. 이러한 유로저항은 엔진의 체적효율(volumetric efficiency)을 떨어뜨려 궁극적으로 엔진의 출력과 효율에 부정적인 영향을 미치게 된다. 본 연구에서는 CFD수치해석 기법을 이용하여 기존 나비형 스로틀밸브의 문제점 개선을 위해 제안한 벤투리형(venturi-type) 가변스로틀밸브(VGTV)의 공기역학적 작동특성에 관해 알아보았으며, 본 장치의 유량과 저항계수($K_L$)의 변화특성 분석을 통해 가솔린엔진의 체적효율 개선효과를 평가하는데 연구의 목적을 두고 있다. 본 연구를 통해 기존의 나비형 스로틀밸브에 비해 새롭게 제안된 벤투리형 가변스로틀밸브의 유로저항이 평균 49.0%정도 개선된다는 사실을 알 수 있었으며, 이는 엔진의 체적효율과 출력에 매우 큰 영향을 줄 것으로 기대된다.

물 분사 시스템에 의한 소형 디젤엔진의 NOx 및 그 외 배출물의 특성에 관한 연구 (A Study on the Characteristics of NOx and another Emisson by Water Injection System for a Light-Duty Diesel Engine)

  • 최재성;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.628-636
    • /
    • 2005
  • In this paper. the effects of a WI(Water Injection) in the intake pipe for a 4-cylinder Dl(Direct Injection) diesel engine are investigated experimentally, The WI system was controlled by the duty cycle from the intake manifold's temperature and MAF(Manifold Air Flow) First. effect of EGR on NOx reduction was investigated. Then WI system was applied to reduce NOx As the results. we can make the NOx map and visualize the NOx results by variation of engine speed and engine load It was known that effect of WI system on NOx reduction without the EGR was better than the with EGR base engine except of low load and speed condition.

Tandem 시스템의 NOx 저감 효과에 관한 연구 (A Study on the Effects of NOx Reduction for the Tandem System)

  • 남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.645-653
    • /
    • 2005
  • The effects of a WI(Water Injection) at the intake Pipe and an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated experimentally The water quantity was controlled by temperature of intake manifold and MAF(Manifold Air Flow). In addition, the urea quantify was controlled by NOx quantify and MAF. Effects of WI system, urea-SCR system and tandem system were investigated for with and without EGR(Exhaust Gas Recirculation). As the results. the SUF(Stoichiometric Urea Flow) and NOx map were obtained. In addition, NOx results can be visualized with engine speed and engine load. It was concluded. therefore, that the NOx reduction effects of the tandem system without the EGR were more than those with the EGR base engine.

DOAS/CRCP 시스템 설계

  • Jeong, Jae-Weon
    • 대한설비공학회지:설비저널
    • /
    • 제35권12호
    • /
    • pp.41-48
    • /
    • 2006
  • For the Designing a Dedicated Outdoor Air System with Ceiling Radiant Cooling Panels the concept of a dedicated outdoor air system(DOAS) with parallel sensible cooling was born from the decoupled system concept, which can be summarized as decoupling of ventilation and air-conditioning functions, or decoupling of sensible and latent load functions. First , remove the latent loads from the outside air(OA) intake and generated in spaces using a 100% OA ventilation system(i.e., DOAS). Second, remove the space sensible loads using a parallel mechanical cooling system, such as fan coil units, conventional variable air volume , and ceiling radiant cooling panel(CRCP) independent of the ventilation system.

  • PDF

고속버스 운행시 공조시스템 조건에 따른 객실 내 실내공기질 변화 (A study on the effect on indoor air quality by ventilation system operation in buses)

  • 안선민;이정섭;심인근;김호현
    • 실내환경 및 냄새 학회지
    • /
    • 제17권4호
    • /
    • pp.346-354
    • /
    • 2018
  • In this study, the condition of the hazardous materials in the bus was monitored according to the ventilation mode of the air conditioning system during bus service. The bus was surveyed using the indoor air quality measurement method of public transportation vehicles within one year of delivery. We evaluate the $CO_2$ and $PM_{10}$, which are the controlled parameters in buses by the Ministry of Environment, and VOCs and HCHO, the non-controlled parameters. The $PM_{10}$ concentration increased due to outdoor air intake; however the $CO_2$ concentration was found to decrease. In addition, the concentration of VOCs and HCHO was found to decrease due to the forced ventilation system and the outdoor air intake. These results show that the concentration of the other materials except $PM_{10}$ can be changed due to the outside air concentration and forced ventilation system. Therefore, through indoor air quality characteristics of the bus according to air condition system are intended to be used as the basis of an operation manual.

디젤기관의 흡.배기관 맥동류가 체적효율에 미치는 영향 (The Effect of Intake and Exhaust Pulsating Flow on the Volumetric Efficiency in a Diesel Engine)

  • 이상득;강희영;고대권;안수길
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.11-16
    • /
    • 2006
  • The pressure fluctuation in the intake and exhaust pipe of 4 stroke-cycle diesel engine is caused by reciprocating motion of piston for suction of fresh air and exhaust of burned gas. this gas dynamic effect can be utilized for increase the volumetric efficiency. Many empirical studies have been carried out to investigate the effects of intake pulsating flow on the volumetric efficiency. However, when the gas dynamic effects are utilized for the variable speed engine to increase its performance, The speed range in which the maximum volumetric efficiency is limited and there occurs some difficulties in lay-out of intake system because it become too long. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow becomes more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on the volumetric efficiency. In this paper the effects of pulsating flow of intake and exhaust pipes on volumetric efficiency were examined and evaluated. It was found that volumetric efficiency was affected by pulsating flow of intake and exhaust pipes.

  • PDF

GDI 엔진의 밸브리프트 변화에 따른 연소실내 흡기유동 및 연료분포에 대한 수치 해석적 연구 (A Numerical Study on the In-cylinder Flow and Fuel Distribution with the Change of Intake Valve Lift in a GDI Engine)

  • 김경배;송미지;김구성;강석호;이영훈;이성욱
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.100-105
    • /
    • 2013
  • While variable valve actuation or variable valve lift (VVL) is used increasingly in spark ignition (SI) engines to improve the volumetric efficiency or to reduce the pumping losses, it is necessary to understand the impact of variable valve lift and timing on the in-cylinder gas motions and mixing processes. In this paper, characteristics of the in-cylinder flow and fuel distribution for various valve lifts (4, 6, 8, 10 mm) were simulated in a GDI engine. It is expected that the investigation will be helpful in understanding and improving GDI combustion when a VVL system is used. The CFD results showed that a increased valve lift could significantly enhance the mixture and in-cylinder tumble motion because of the accelerated air flow. Also, it can be found that the fuel distribution is more affected by earlier injection (during intake process) than that of later injection (end of compression). These may contribute to an improvement in the air-fuel mixing but also to an optimization of intake and exhaust system.

데시칸트 공조시장 및 전망 (Desiccant Air Conditioning System market and Prospect)

  • 박승태;정광섭;김영일;박종일
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.230-235
    • /
    • 2009
  • The Desiccant air conditioning system has been designed as the industrial dehumidifier under the leadership of developed countries, considering CFC problems in 1990, indoor air quality(IAQ) and outdoor air intake rates. This could make the technical differences between them and us. Nowadays, domestic technology has been developed in some parts but there still remain many challenges to be managed. In this study, these tasks would be handled according to the desiccant air conditioning system market and prospects.

  • PDF