• Title/Summary/Keyword: Air flow non-uniform distribution

Search Result 24, Processing Time 0.018 seconds

Heat Transfer Performance Variation of Condenser due to Non-uniform Air Flow (불균일한 풍속분포에 따른 응축기의 열전달 성능 변화)

  • Lee, Won-Jong;Jeong, Ji Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.193-198
    • /
    • 2014
  • Heat transfer performance variation of a condenser caused by non-uniform distribution of air flow was investigated using a numerical simulation method. A heat exchanger used for a outdoor unit of a commercial heat pump system and represented by a numerical model was selected. Non-uniform profile of air-velocity was constructed by measuring the air velocity at various locations of the outdoor unit. Simulation was conducted for various refrigerant circuits and air flow conditions. Simulation results show that the heat transfer capacity was reduced depending on the air-flow rate and the refrigerant circuit configuration. It is also shown that the capacity reduction rate is increased as the average air velocity decreases.

An Experimental Study on the Non-Uniform Flow Distribution in the Windbox of an Oil-Fired Boiler (유류 연소 발전용 보일러에서 공기 공급 계통의 불균일성에 관한 실험적 연구)

  • Go, Young-Gun;Kim, Young-Zoo;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Oil-fired power plant usually uses several burners and combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner uniformly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and non-uniform supplies of combustion air are induced by these unbalanced flows in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in a windbox and measured the velocities at the exit of burners in a real windbox and model tests to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric. Additionally some modifications of windbox shape and installation of baffles were proposed to make the uniform flow in the windox.

  • PDF

Conjugated heat transfer on convection heat transfer from a circular tube in cross flow (원관 주위의 대류 열전달에 대한 복합 열전달)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.523-534
    • /
    • 1998
  • The convection heat transfer on horizontal circular tube is studied as a conjugated heat transfer problem. With uniform heat generation in a cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer are investigated for the case of forced convection around horizontal circular tube in cross flow of air and water. Non-dimensional conjugation parameter $ K^*$ which can be deduced from the governing energy differential equation should be used to express the effect of circumferential wall heat conduction. Two-dimensional temperature distribution$ T({\gamma,\theta})$ is presented. The influence of circumferential wall heat conduction is demonstrated on graph of local Nusselt number.

  • PDF

Computer Simulation Study of the Thermoelectric Cooling by Hybrid Method (하이브리드법을 이용한 열전냉각의 수치해석 연구)

  • Kim, N.J.;Lee, J.Y.;Kim, C.B.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.97-108
    • /
    • 2000
  • The purpose of this study is to minimize the heat transfer surface area and cold fluid exit temperature of heat exchanger which applied to the refrigeration and air-conditioning system by utilizing the thermoelectric principle. Both uniform and non-uniform current distribution methods which applied to the analysis of the TE elements that incorporates heat exchanger were investigated. The non-uniform current distribution method had the better coefficient of performance and had the lower cold fluid exit temperature of the TE cooling system than the uniform current distribution method. It was found that if a TE cooling system incorporates a heat exchanger, a non-uniform current distribution should guarantee to the lowest cold fluid exit temperature. Also, the hybrid method (combination of the uniform and non-uniform current distribution method) is investigated to achieve the best results by combining the uniform and non-uniform current distributions. The results show that it can lower the cold fluid exit temperature and reduce the heat transfer surface area for the parallel flow arrangement if we apply the constant current in some entry region and the non-uniform increasing current in the direction of the cold fluid flow afterwards.

  • PDF

The Effect of Non-uniform Superheat on the Performance of a Multi-path Evaporator (다중 유로에서 과열도의 불균형에 따른 증발기의 성능 특성에 관한 연구)

  • 최종민;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1043-1048
    • /
    • 2003
  • An experimental investigation was executed to determine the capacity degradation due to non-uniform refrigerant distribution in a multi-path evaporator. In addition, the possibility of recovering the capacity reduction by controlling the refrigerant distribution among refrigerant paths was assessed. The finned-tube evaporator, which had a three-path and three-depth-row, was tested by controlling inlet quality, exit pressure, and exit superheat for each refrigerant path. The capacity reduction due to superheat unbalance between each path was as much as 30%, even when the overall evaporator superheat was kept at a target value of 5.6$^{\circ}C$. It may indicate that the internal heat transfer within the evaporator assembly caused the partial capacity drop. For the evaporator having air mal-distributions, the maximum capacity reduction was found to be 8.7%. A 4.5% capacity recovery was obtained by controlling refrigerant distribution to obtain the target superheat at the outlet of each path.

Flow simulations of the wet station dryer module for the solar cell manufacturing (태양전지 제조용 세정장비의 건조모듈 유동해석)

  • Hong, Joo-Pyo;Lim, Ki-Sup;Yoon, Jong-Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.109-113
    • /
    • 2011
  • Hot air flow simulations of the wet station dryer module for the solar cell cleaning were conducted. Air incident angles such as to the substrates ($45^{\circ}$), to the bottom ($90^{\circ}$), and to the wall ($135^{\circ}$) were considered. Based on the simulated velocity and temperature profiles, appropriate incident angle was proposed, and it was well matched to experimental results. Additionally, uniform and non-uniform air hole sizes of the tube were compared for the uniform air flow distribution through the batch.

A Study on the Uniform Distribution of Steam Flow in the Superheater Tube System (과열기 관군에서의 증기유량 균일 배분 연구)

  • Park, Ho-Young;Kim, Sung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.416-426
    • /
    • 2008
  • The boiler tube failure often experienced in the superheater of a utility boiler can seriously affect the economic and safe operation of the power plant. It has been known that this failure is mainly caused by the thermal load deviation in the superheater tube system, and deeply intensified by the non-uniform distribution of steam flow rates. The nonuniform steam flow is distinctively prominent at low power load rather than at full power load. In this paper, we analyze the steam flow distribution in the superheater tube system by using one dimensional flow network model. At 30% power load, the deviation of steam flow rate is predicted to be within 0.8% of the averaged flow rate. This deviation can be reduced to 0.1% and 0.07% by assuming two cases, that is, the removal of 13th tube at each tube rows and the installation of intermediate header, respectively. The assumed two cases would be effective for the uniform steam flow distribution across 85 superheater tube rows.

An Investigation of Heat Transfer Characteristics of Swirling Flow in a 180$^{\circ}$ Circular Section Bend with Uniform Heat Flux

  • Chang, Tae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1520-1532
    • /
    • 2003
  • An experiment was performed to obtain the local heat transfer coefficient and Nusselt number in a circular duct with a 180$^{\circ}$ bend for Re=6 x 10$^4$, 8 x 10$^4$ and 1 x 10$\^$5/ under swirling flow and non-swirling flow conditions. The test tube with a circular section was made from stainless steel having a curvature ration of 9.4. Current heat flux of 5.11 kW/㎡ was applied to the test tube by electrical power and the swirling motion of air was produced by a tangential inlet to the pipe axis at 180$^{\circ}$. Measurements of local wall temperatures and the bulk mean temperatures of air were made at four circumferential positions at 16 stations. The wall temperatures showed a reduced distribution curve at the bend for the non-swirling flow, but this effect did not appear for the swirling flow. The Nusselt number distributions for the swirling flow, which was calculated from the measured wall and the bulk temperatures, were higher than that of the non-swirling flow. The average Nusselt number of the swirling flow increased by about 90-100%, compared to that of the non-swirling flow. The Nu/Nu$\_$DB/ values at the 90$^{\circ}$ station for non-swirling flow and swirling flow were approximately 2.5 and 4.8 at Re=6x10$^4$ respectively. The values agree well with Said's results for non-swirling flow.

Numerical Analysis of the Flow in the Drying Chamber of a Sizing Machine (가호기 건조 시스템에서 수치적 유동해석)

  • 이진호;김수연
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.10a
    • /
    • pp.29-34
    • /
    • 1996
  • In the present paper, the flow distribution in the hot air drying chamber of a sizing machine was numerically analyzed with respect to the geometries of the intake duct to obtain the more uniform flow distribution in the chamber. The result shows that the velocity distribution in the inlet of the chamber was significantly dependent on the the geometry of the intake duct. The degree of the non-uniformity in the chamber was reduced as the incident angle of the intake duct became to be smaller.

  • PDF

Study on Non-uniform Thermal Comfort in Hybrid Air-Conditioning System with CFD Analysis (CFD 해석을 통한 하이브리드 공조시스템의 인체 온열감의 불균일성에 관한 연구)

  • Nam, Yu-Jin;Sung, Min-Ki;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.216-222
    • /
    • 2011
  • Recently, hybrid air-conditioning system has been proposed and applied to achieve building energy saving. One example is a system combining radiation panel with natural wind-induced cross-ventilation. However, few research works have been conducted on the non-uniformity of thermal comfort in such hybrid air-conditioning system. In this paper, both thermal environment and non-uniform thermal comfort of human thermal model under various air-conditioning system, including hybrid system, were evaluated in a typical office room using coupled simulation of computation fluid dynamics, radiation model and a human thermal model. The non-uniformity of thermal comfort was evaluated from the deviation of surface temperature of human thermal model. Flow fields and temperature distribution in each case were represented.