• Title/Summary/Keyword: Air bubble

Search Result 408, Processing Time 0.031 seconds

Control of Membrane Fouling in Submerged Membrane Bioreactor(MBR) using Air Scouring (침지형 생물 반응기 공정에서 플럭스 향상을 위한 공기 세척 효과에 관한 연구)

  • Shin, Dong-Hwan;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.948-954
    • /
    • 2008
  • Membrane bioreactor(MBR) processes have been widely applied to wastewater treatment for last decades due to its excellent capability of solid-liquid separation. However, membrane fouling was considered as a limiting factor in wide application of the MBR process. Excess aeration into membrane surface is a common way to control membrane fouling in most MBR. However, the excessively supplied air is easily dissipated in the reactor, which results in consuming energy and thus, it should be modified for effective control of membrane fouling. In this study, cylindrical tube was introduced to MBR in order to use the supplied air effectively. Membrane fibers were immersed into the cylindrical tube. This makes the supplied air non-dissipated in the reactor so that membrane fouling could be controlled economically. Two different air supplying method was employed and compared each other; nozzle and porous diffuser which were located just beneath the membrane module. Transmembrane pressure(TMP) was monitored as a function of airflow rate, flux, and ratio of the tube area and cross-sectioned area of membrane fibers(A$_m$/A$_t$). Flow rate of air and liquid was regulated to obtain slug flow in the cylindrical tube. With the same flow of air supply, nozzle was more effective for controlling membrane fouling than porous diffuser. Accumulation of sludge was observed in the tube with the nozzle, if the air was not suppled sufficiently. Reduction of membrane fouling was dependent upon the ratio, A$_m$/A$_t$. For diffuser, membrane fouling was minimized when A$_m$/A$_t$ was 0.27, but 0.55 for nozzle.

Applicability of Washing Techniques Coupled with High-Pressure Air Jet for Petroleum-contaminated Soils (고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구)

  • Choi, Sang-Il;Kim, Kang-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.61-68
    • /
    • 2006
  • Soil washing techniques coupled with high pressure air jet were applied for diesel-contaminated soils sampled by an underground oil reservoir of which the initial total petroleum hydrocarbon (TPH) ($2,828{\pm}206\;mg/kg$) exceeded 5 times of current standard level (500 mg/kg) regulated by the Soil-Environment Conservation Law. Through several tests, we found that the position of impeller has a critical impact for washing efficiencies. The highest washing efficiency was obtained at an oblique angle (30 degree) for the impeller and optimized mixing speed (300 rpm) that could have high shearing forces. Considered economical and feasible aspects, the optimum mixing time was 10 min. Rate constants of TPH removal derived from the first-order equation were not linearly increased as mixing speed increased, indicating that mechanical mixing has some limits to enhance the washing efficiencies. Application of high-pressure air jet in washing process increased the washing efficiency. This increase might be caused by the fact that the surface of micro-air bubbles strongly attached hydrophobic matters of soil particles. As the pressure of air jet increased, the separation efficiencies of TPH-contaminated soil particles increased. In the combined process of high-pressure air jet and mixing by impeller, the optimum mixing speed and air flow-rate were determined to be 60 rpm and $2\;kg/cm^2$, respectively. Consequently, the washing technique coupled with high-pressure air jet could be considered as a feasible application for remediating petroleum-contaminated soils.

Effect of the Physical Parameters and Alkalinity in the Ammonia Stripping (반응조의 물리적 인자와 알칼리도가 암모니아 탈기에 미치는 영향에 관한 연구)

  • An, Ju-Suk;Lim, Ji-Hye;Back, Ye-Ji;Chung, Tae-Young;Chung, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.583-590
    • /
    • 2011
  • The effect of the physical parameters in the reactor (aeration depth, bubble size, and surface area) and the alkalinity of the solution on the ammonia stripping by bubbling were evaluated. When an airflow of 30 L/min was bubbled below the solution surface in the range 6-53 cm, the ammonia removal rate were observed to be the same regardless of the bubbling depths. At pH 10.0 and a temperature of $30^{\circ}C$, the average rate constant and the standard deviation were $0.178h^{-1}$ and 0.004. No appreciable changes in the ammonia removal rate were also observed with varying the bubble size and the air-contacting surface area. Alkalinity of the solution was found to affect the ammonia removal rate indirectly. This is expected because the pH of the solution would vary with dissolution of gaseous $CO_2$ by air bubbling. The real wastewaters from landfill site and domestic wastewater treatment plant were tested. In the case of domestic wastewater (pH = 7.1, alkalinity = 75 mg/L), the ammonia removal rate was poor even with the control of pH to 9.3. The raw landfill leachate (pH = 8.0, alkalinity = 6,525 mg/L), however, showed the appreciable removal rate with increasing pH during aeration. When the initial pH of the leachate was adjusted 9.4, the removal rate was significantly increased without changing the pH during aeration.

HISTOCHEMICAL OBSERVATION OF CANNED FISH BALL COLLECTED FROM THE LOCAL MARKET OF KOREA (시판 통조림 어단의 조직화학적 관찰)

  • CHOE Sun Nam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.166-170
    • /
    • 1975
  • Six kinds of canned processed fish-balls were collected from the local market of Korea in April, 1975 and frozen section was prepared with the fish-balls at $-25^{\circ}C$ , coincidently stained with PAS, sudan III, carbol-thionine and light green for histochemical observation on evaluation of materials and quality of the porducts. The results tased on morphological analysis were summarized as follows. Protein contents were showed the lowest level, ranging about $2.7-9.0\%$, while carbohydrate was contained from $58.1\%\;to\;75.2\%$ of the highest degree. Fat contents had a great variety depending upon the quality of porducts, showing $1.4-17.6\%$, and air bubble was contained from $14.4\%\;to\;21.1\%$, tended to a large quantity. In sample No. 6, the micro-organism3 were observed around the denaturated prtotein, carbohydrate, and air bubbles in canned fish-ball. When the other samples were incubated for 4 days at $37^{\circ}C$, bacterial colony was also formed around the denaturated protein, carbohydrate, and air bubbles in cavities.

  • PDF

Biological Fixation of Carbon Dioxide by Synechocystis PCC 6803 (Synechocystis PCC 6803에 의한 이산화탄소의 생물학적 고정화)

  • 김장규;원성호;김남기
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.101-107
    • /
    • 1998
  • Carbon dioxide is estimated to be responsible for 60% of the global warming effect, and this percentage is tending upward. Studies on removal and fixation of $CO_2$ in the flue gas are recognized as one of the important roles of the future biotechnology. Photobiological systems have considerably higher photosynthetic efficiency than conventional biomass system. The experiment for the photosynthetic fixation of $CO_2$ and the biomass production was performed with various initial cell concentration in a tubular photobioreactor and a bubble column $CO_2$ contactor with a gas sparger of $CO_2$ -enriched air(0.03~20%). Synechocystis PCC 6803 could grow at 10~20% $CO_2$ content under pH control. The highest specific growth rate, 0.0258 $h^{-1}$ , was obtained at 5% $CO_2$-air mixture. The maximum cell production rate, 0.2784 g/L.day, was obtained when the initial cell concentration was 0.45 g/L at 5% $CO_2$ -air mixture. The maximum cell concentration was 2.03 g/L in the tubular photobioreactor when the light intensity was $45.5{\mu}$ $E/m^2$ . s. This system showed 0.482 g $CO_2$ /L . day of the $CO_2$ fixation.

  • PDF

Efficacy of various cleaning solutions on saliva-contaminated zirconia for improved resin bonding

  • Kim, Da-Hye;Son, Jun-Sik;Jeong, Seong-Hwa;Kim, Young-Kyung;Kim, Kyo-Han;Kwon, Tae-Yub
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2015
  • PURPOSE. This study aimed to investigate the efficacy of cleaning solutions on saliva-contaminated zirconia in comparison to air-abrasion in terms of resin bonding. MATERIALS AND METHODS. For saliva-contaminated air-abraded zirconia, seven cleaning methods)-no contamination (NC), water-spray rinsing (WS), additional air-abrasion (AA), and cleaning with four solutions (Ivoclean [IC]; 1.0 wt% sodium dodecyl sulfate [SDS], 1.0 wt% hydrogen peroxide [HP], and 1.0 wt% sodium hypochlorite [SHC])-were tested. The zirconia surfaces for each group were characterized using various analytical techniques. Three bonded resin (Panavia F 2.0) cylinders (bonding area: $4.5mm^2$) were made on one zirconia disk specimen using the Ultradent jig method [four disks (12 cylinders)/group; a total of 28 disks]. After 5,000 thermocycling, all specimens were subjected to a shear bond strength test with a crosshead speed of 1.0 mm/minute. The fractured surfaces were observed using an optical and scanning electron microscope (SEM). RESULTS. Contact angle measurements showed that groups NC, AA, IC, and SHC had hydrophilic surfaces. The X-ray photoelectron spectroscopy (XPS) analysis showed similar elemental distributions between group AA and groups IC and SHC. Groups IC and SHC showed statistically similar bond strengths to groups NC and AA (P>.05), but not groups SDS and HP (P<.05). For groups WS, SDS, and HP, blister-like bubble formations were observed on the surfaces under SEM. CONCLUSION. Within the limitations of this in vitro study, some of the cleaning solutions (IC or SHC) were effective in removing saliva contamination and enhancing the resin bond strength.

Colour Removal from Dyestuff Wastewater by Micro Bubbles Flotation Process (마이크로 버블 부상 공정에 의한 염료폐수의 색도 제거)

  • Kim, Myeng-Joo;Han, Sien-Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.606-612
    • /
    • 2022
  • The purpose of this study is to convert hydrophobic dyestuff to hydrophilic dyestuff by reacting cationic collector with anionic dyestuff and reaction anionic collector with cationic dyestuff. The removal of colors from aqueous solutions and/or dispersions has been studied by dispersed-air flotation in a batch column. In this studies used generated micro bubble by ceramic gas diffuser having micro pore size for air flotation process. In this study, a ceramic gas diffuser with micro pore size was used to generate micro bubbles for the air flotation process. Two colours were used for the experiments: Basic Yellow 1 (cationic dyestuff) and Direct Orange 10 (anionic dyestuff). All two were effectively removed by flotation within 8 mins. Sodium dodecyl sulfate, sodium oleate (an anionic collector), and amines (a cationic collector) were found to be effective as collectors in the removal of color, which was found to be related to the pH of the solution and the amount of collector added to it, with high collector dosages causing the process to become pH-independent.

A Study on the Atomizing Mechanism for the Swirl Nozzle (와권(渦卷) 노즐의 무화기구(霧化機構)에 관(關)한 연구(硏究))

  • Lee, Sang Woo;Sakai, Jun;Ishihara, Akira
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.81-97
    • /
    • 1987
  • Two nozzles with different size (Figure 2) were particularly designed to supply air through the swirl core into the central part of the liquid stream in the same parallel direction to produce a well-mixed air and water in the whirl chamber as spray liquid in bubble formation. Atomization was attempted to improve by using both the preliminary break-up process with less viscosity and less surface tension in the whirl chamber and the effects of increased frequency of the band of drops with the raised ambient air density in front of the nozzle orifice. The volumetric ratio between spray liquid and air on four levels was used to investigate the effects of air as a component of the mixture on atomization. The results of the experiment were summarized as follows; Droplet size became progressively finer as the operating pressure was increased in the range of $0.70kg/cm^2$ to $6.33kg/cm^2$, which was similar to the previous works. The new atomizing mechanism so-called 'air-center nozzle' gave a narrower range in droplet size distribution with smaller volumetric median diameter (VMD) than that of the existing spray system at a given pressure, which showed the possibility of improvement of atomization in a certain limit. The volumetric median diameter produced by the new atomizing mechanism was decreased from the central region toward the exterior edges across the spray pattern.

  • PDF

Remediation of Sediments using Micro-bubble (미세기포를 이용한 퇴적물 정화)

  • Kang, Sang Yul;Kim, Hyoung Jun;Kim, Tschung Il;Park, Hyun Ju;Na, Choon Ki;Han, Moo Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.420-427
    • /
    • 2016
  • This study was conducted on the sediment remediation using micro-bubble to remove fine particles. For this study, characteristics of contamination and release in sediment were analyzed. And then, the characteristics of bubbles on removal efficiency was investigated at various operation conditions. In particle size distribution of the sediment used for the study, the proportion of clay and silt (<0.075 mm) was about 7.7%, sand (0.075~4.75 mm) was about 67.8%, and gravel (${\geq}4.75$) was 24.5%. Total nitrogen (TN) and total phosphorus (TP) of the sediment were 2,790~3,260, 261~311 mg/kg respectively. Ignition loss and water content were 4.1~9.6, 32.9~53.2% respectively. In analysis of removal efficiency according to operation conditions of micro-bubble, it was the highest when operation condition is pressure 6 atm, pressurized water ratio 30%, and coagulant dosage 15 ppm. At the time, the sediment's removal efficiency was 19.9%. Accordingly removal efficiency of TN and TP were 21.4, 22.6% respectively. Finally a research was found that fine particles in sediment were almost removed by micro-bubble, which led to decrease nutrients' release at about 20.1~64.3% in comparison to sediment including lots of fine particles.

A New Test Method to Evaluate Potential White Pitch Deposit - Influence of pH and calcium hardness - (백색 점착성 이물질을 측정하기 위한 새로운 시험법 - pH와 칼슘경도의 영향 -)

  • Shin, Eun-Ju;Choi, Tae-Ho;Song, Bong-Keun;Cho, Byoung-Uk;Ryu, Jeong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.2
    • /
    • pp.26-33
    • /
    • 2009
  • A new testing method to evaluate the deposition potential of white pitch was developed. The new method involves depositing the potential white pitch particles on the air bubble covered plastic film in the pitch deposit tester (PDT) developed by KRICT and analysing the deposited area of white pitch using an image analyzer. In addition, the effect of two important factors (pH and calcium hardness) on white pitch deposition potential was elucidated. When pH of the coated broke stock was increased from neutral to alkali or the calcium hardness of the stock was decreased, the pitch deposit area was decreased, implying that these two factors have to be controlled during the evaluation of pitch deposition potential. It was found that hydrophobicity of the surface of latex binding films repulped is a key factor influencing white pitch deposition.