DOI QR코드

DOI QR Code

마이크로 버블 부상 공정에 의한 염료폐수의 색도 제거

Colour Removal from Dyestuff Wastewater by Micro Bubbles Flotation Process

  • 김명주 (한국공학대학교 생명화학공학과) ;
  • 한신호 (한국공학대학교 생명화학공학과)
  • Kim, Myeng-Joo (Department of Chemical Engineering & Biotechnology, Tech University of Korea) ;
  • Han, Sien-Ho (Department of Chemical Engineering & Biotechnology, Tech University of Korea)
  • 투고 : 2022.10.06
  • 심사 : 2022.11.25
  • 발행 : 2022.12.10

초록

수용액에서 수용성 염료를 소수성 염료로 전환시킨 후 마이크로 버블을 이용한 침전 및 부상응집에 의한 염료를 제거하는 연구를 수행하였다. 양이온성 염료에 음이온 collector를 반응시키며, 또한 음이온성 염료에 양이온 collector를 첨가하여 소수성으로 변환시켰다. 소수성으로 전환된 염료 용액을 회분식 반응기에 저장하여 마이크로 버블을 분사시켜 색을 제거하였다. 염료 용액을 제조하기 위해 Basic Yellow 1 및 Direct Orange 10을 사용하였으며, sodium dodecyl sulfate, oleic acid sodium salt 및 amine류와 같은 음이온 및 양이온 collector를 사용하면 색 제거에 효과적이었으며, 모든 색은 8분 이내에 제거되었다. 색 제거는 collector의 첨가량과 수용액 pH의 영향을 받으며, 염료농도에 비해 극히 소량의 계면활성제를 첨가하였을 경우에는 pH에 의존하였으나, 염료농도와 비슷한 collector 양을 첨가하였을 경우에는 pH에 의존하지 않았음을 알 수 있었다. 그 이유는 collector와 염료가 1:1M로 반응하여 소수성이 완전히 부여되어야 제거됨을 알 수 있었다.

The purpose of this study is to convert hydrophobic dyestuff to hydrophilic dyestuff by reacting cationic collector with anionic dyestuff and reaction anionic collector with cationic dyestuff. The removal of colors from aqueous solutions and/or dispersions has been studied by dispersed-air flotation in a batch column. In this studies used generated micro bubble by ceramic gas diffuser having micro pore size for air flotation process. In this study, a ceramic gas diffuser with micro pore size was used to generate micro bubbles for the air flotation process. Two colours were used for the experiments: Basic Yellow 1 (cationic dyestuff) and Direct Orange 10 (anionic dyestuff). All two were effectively removed by flotation within 8 mins. Sodium dodecyl sulfate, sodium oleate (an anionic collector), and amines (a cationic collector) were found to be effective as collectors in the removal of color, which was found to be related to the pH of the solution and the amount of collector added to it, with high collector dosages causing the process to become pH-independent.

키워드

과제정보

본 연구는 경기도의 경기도 지역협력 연구센터(GRRC)사업의 일환으로 수행하였음. [(GRRC한국공대2020-A02),(기초2)CFRP+Metal접합에 사용되는 접착제 분석 및 적용]

참고문헌

  1. M. H. Han, M. W. Huh, and J. D. Park, Chemical precipitation treatment for the disperse dyes removal, Korean Soc. Dyers & Finishers, 14, 40-50 (2002).
  2. M. Shabir, M. Yasin, M. Hussain, I. Shafiq, P. Akhter, S. Nizami, B. H. Jeon, and Y. K. Park, A review on recent advances in the treatment of dye-polluted wastewater, J. Ind. Eng. Chem., 112, 1-19 (2022). https://doi.org/10.1016/j.jiec.2022.05.013
  3. M. W. Cho, M. W. Huh, M. H. Han, and G. W. Kang, Isolation and culture characteristics of strains for color removal of disperse dyes, Korean Soc. Dyers & Finishers, 12, 25-31 (2000).
  4. M. H. Han, B. S. Kim, and M. W. Huh, Ozonation of reactive dyes and control of THM formation potentials, Korean Soc. Dyers & Finishers, 16, 34-40 (2004).
  5. M. H. Han, B. S. Kim, and M. H. Ban, Adsorption of the reactive dyes of aqueous solutions and the Changes of THMFPs using activated carbon fiber, Korean Soc. Water & Wastewater, 17, 145-155 (2003).
  6. I. G. Laing, The impact of effluent regulations on the dyeing industry, Rev. Prog. Coloration, 21, 56 (1991). https://doi.org/10.1111/j.1478-4408.1991.tb00081.x
  7. R. Anliker, Colour chemistry and the environment, Rev. Prog. Coloration, 8, 60 (1977). https://doi.org/10.1111/j.1478-4408.1977.tb03808.x
  8. S. G. Cooper, The Textile Industry, Environmental Control and Energy Conservation, Noyes Data Co., Park Ridge, New Jersey (1978).
  9. W. F. Nolan, Analysis of water pollution abatement in the textile industry, MSc Thesis, Clemeson University Clemson USA (1972).
  10. A. C. Serra, C. Docal, and A. R. Gonsalves, Efficient azo dye degradation by hydrogen prooxide with metaloloporphyrins as catalysts, Mol. Catal. A-Chem., 238, 192 (2005). https://doi.org/10.1016/j.molcata.2005.05.017
  11. W. G. Kuo, Decolorizing dye wastewater with Fenton's reagent, Water Res., 26, 881 (1992). https://doi.org/10.1016/0043-1354(92)90192-7
  12. C. Tizaaoui and N. Grima, Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution, Chem. Eng. J., 173, 463 (2011). https://doi.org/10.1016/j.cej.2011.08.014
  13. R. Zhang, C. Zhang, X. X. Cheng, L. Wang, Y. Wu, and Z. Guan, Kinetics of decolorization of azo dye by bipolar pulsed barrierr discharge in a three-phase plasma reactor, J. Hazard. Mater., 142, 105 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.071
  14. H. P. Shivaraju, K. Byrappa, M. B. Shayan, T. Rungnapa, S. Pakamand, V. Kumar, and S. Ananda, Hydrothermal coating of ZnO onto calcium alumino silicate beads and their application in photodegradation of amaranth dye, Mater. Res. Innov., 14, 73 (2010). https://doi.org/10.1179/143307510X12599329343367
  15. D. J. Jang, T. H. Lim, S. B. Lee, Y. S. Lee, and H. Park, Decomposition of ethylene by using dielectric barrier discharge plasma, Appl. Chem. Eng., 23, 608 (2012).
  16. B. Jiang, J. Zheng, Q. Liu, and M. Wu, Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system, Chem. Eng. J., 229, 9 (2013). https://doi.org/10.1016/j.cej.2013.05.095
  17. M. Tichonovas, E. Krugly, V, Racys, R. Hippler, V. Kauneliene, I. Stasiulaitiene, and D. Martuzevicius, Degradation of various various textile dyes as wastewater pollutions under dielectric barrier discharge plasma treatment, Chem. Eng. J., 229, 9 (2011). https://doi.org/10.1016/j.cej.2013.05.095
  18. P. M. K. Reddy, B. R. RajP. M. K. Reddy, B. R. Raju, J. Karuppiah, E. I. Reddy, and C. Subrahmanyam, Degradatiom and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor, Chem. Eng. J., 217, 41 (2013). https://doi.org/10.1016/j.cej.2012.11.116
  19. J. B. Jung, S. H. Lee, and J. U. Bae, Charateristics for refractor organic compounds in aqueous by sonolysis and electrolysis, J. Korean Chem. Soc., 50, 454-463 (2006). https://doi.org/10.5012/JKCS.2006.50.6.454
  20. M. N. Katarzyna, K. K. Malgorzata, and W. Tomasz, Capillary membrane for separation of dye particle, Desalination, 105, 91 (1996). https://doi.org/10.1016/0011-9164(96)00062-8
  21. S. I. Kim, B. W. Lee, and Y. J. Yun, Effect of salt concentraion and temperature in synthetic dyestuff wastewater treatment using plate and frame membrane module, Kor. Environ. Sci. Soc., 7, 209-215 (1998).
  22. S. I. Abo-Elela, F. A. El-Gohary, H. I. Ali, and R. S. Abdel Wahaab, Decolorization azo dyea by biological treatment method, Environ. Technol. Lett., 9, 101 (1988). https://doi.org/10.1080/09593338809384546
  23. Y. S. Jo and Y. S. Jang, A study to analyze the effect of food waste leachate (FWL) injection on the acceleration of waste bio-compression, J. Korea Soc. Waste Manag., 37, 211-218 (2020). https://doi.org/10.9786/kswm.2020.37.3.211
  24. M. H. Han, Chemical precipitation treatment for the disperse dyes remaval, J. Korean Soc. Dyes & Finishers, 14, 40-50 (2002).
  25. M. H. Han and M. W. Huh, Characteristics of the wastewater treatment processes for the removal of dyes in aqueous solution, Textile Coloration and Finishing, 17, 31-39 (2005).
  26. J. Hoigne and H. Bader, The role of hydroxyl radical reactions in ozonization processes in aqueous solution, Water Res., 10, 377-386 (1976). https://doi.org/10.1016/0043-1354(76)90055-5
  27. Y. M. Song, An oxidation treatment of wastewater containing substances, J. Korea Soc. Waste Manag., 37, 188-193 (2020). https://doi.org/10.9786/kswm.2020.37.3.188
  28. K. Azam, N. Shezad, L. Shafiq, P. Akhter, F. Akhtar, F. Jamil, S. Shafique, Y. K. Park, and M. Hussain, A review on activated carbon modification for the treatment of wastewater containing anionic dyes. Chemosphere, 30, 135566 (2022).