• Title/Summary/Keyword: Air actuating

Search Result 21, Processing Time 0.033 seconds

Development of Roll Stability Control of Commercial Vehicles with Environment Information (환경 정보를 이용한 상용차량 전복 방지 알고리즘 개발)

  • Park, Dongwoo;Her, Hyundong;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • When it comes to commercial vehicles, their unique characteristics - center of gravity, size, weight distribution - make them particularly vulnerable to rollover. On top of that, conventional heavy vehicle brake exhibits longer actuation delays caused in part by long air lines from brake pedal to tires. This paper describes rollover prevention algorithm that copes with the characteristics of commercial vehicles. In regard of compensating for high actuating delay, predicted rollover index with short preview time has been designed. Moreover, predicted rollover index with longer preview time has been calculated by using road curvature information based on environment information. When rollover index becomes larger than specific threshold value, desired braking force is calculated in order to decrease the index. At the same time, braking force is distributed to each tire to make yaw rate track desired value.

Cooling Method of the Actuating Motor Using Heat Pipe (히트파이프를 이용한 구동모터에 대한 냉각기술에 관한 연구)

  • Noh, Sang-Hyun;Lee, Dong-Ryul
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1168-1173
    • /
    • 2006
  • This research is to verify the cooling effect of the acting surface on the rotary motor using heat pipe and conventional cooling fan. In order to show the cooling performance of the rotary motor and heat pipe with the fin-typed heat sink, the surface temperature of the motor and condenser was measured in real time. The experiments were also conducted as for not only cooling device installed with heat pipe only, but with heat pipe and conventional cooling fan simultaneously.

  • PDF

Design and Analysis of IPMC Actuator-driven ZNMF Pump for Air Flow Control of MAV's Wing (IPMC 작동기로 구동되는 초소형 비행체 날개의 공기흐름 조절용 ZNMF(zero-net-mass-flux) 펌프의 예비설계 및 해석)

  • Lee, Sang-Gi;Kim, Gwang-Jin;Park, Hun-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.22-30
    • /
    • 2006
  • In this paper, a systematic design method on an IPMC(ionic polymer-metal composite)-driven ZNMF(zero-net-mass-flux) pump is introduced for the flow control of an MAV's (micro air vehicle) wing. Since the IPMC is able to generate a large deformation under a low input voltage along with its ability to operate in air, and is easier to be manufactured in a small size, it is considered to be an ideal material of the actuating diaphragm. Through the numerical methods, an optimal shape of the IPMC diaphragm was found for maximizing the stroke volume. Based on the optimal IPMC diaphragm, a proto-type ZNMF pump with a slot, was designed. By using the flight speed of the MAV considered in this work, the driving frequencies(~ 40 Hz) of IPMC diaphragm, and the flow velocity through the pump's slot, the calculated non-dimensional frequency and the momentum coefficient ensure the feasibility of the designed ZNMF pump as a flow control device.

A Study on Variable Mold for Improving the Forging Process of Transition Nozzle using TRIZ and DEFORM (TRIZ와 DEFORM을 활용한 트랜지션 노즐의 성형 공정 개선을 위한 가변 금형에 대한 연구)

  • Hwang, Hui-Geon;Chung, Won-Jee;Sul, Sang-Suk;Kim, Dae-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.29-35
    • /
    • 2020
  • Transition Nozzles are used in industrial air-cooled heat exchangers and widely used in industrial sites as an important component in the heat energy transfer between a heat source and an actuating fluid. There is a worldwide demand for transition nozzles with various materials and shapes, depending on the use environment. This paper aims to improve the transition nozzle forging process suitable for the production of many varieties using Steps 1 to 6 of the TRIZ Methodology for Problem Solving. By utilizing the TRIZ Methodology, this study derives a method to design a variable mold, which is more efficient and can reduce costs compared with having to use several molds. To verify the suitability of the methods derived using the TRIZ technique, a forging analysis is performed on a transition nozzle using DEFORMⓇ, a commercial program for plasticity analysis, and the nozzle material is evaluated for damage as a result of deformation of the transition nozzle thickness. The derived methods can be applied to transition nozzle formation equipment to improve the efficiency of the formation process.

Temperature Control using Peltier Element by PWM Method

  • Pang, Du-Yeol;Jeon, Won-Suk;Choi, Kwang-Hoon;Kwon, Tae-Kyu;Kim, Nam-Gyun;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1400-1404
    • /
    • 2005
  • This paper presents the temperature control of aluminum plate by using Peltier element. Peltier effect is heat pumping phenomena by electric energy as one of the thermoelectric effect. So if current is charged to Peltier element, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier element is used to control the temperature of small aluminum plate with current control and operating cooling fan only while cooling duration. Operating cooling fan only while cooling duration is proper to get more rapid heating and cooling duration. As a result of experiment, it takes about 100sec period to repeating temperature between $35^{\circ}C$ and $70^{\circ}C$ and about 80sec from $40^{\circ}C$ to $70^{\circ}C$ in ambient air temperature $25^{\circ}C$ and while operating cooling fan only in cooling duration. Future aim is to apply this temperature control method in actuating SMHA(special metal hydride actuator) which is applicable in Siver project acting in low frequency range by using Peltier element for heating and cooling.

  • PDF

Implementation of Wireless Automatic Control System for Vehicle Interior Environment (차량 내부 환경 제어용 무선 자동화 시스템 구현)

  • Cho, Hae-Seong;Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.287-291
    • /
    • 2010
  • In this paper, we designed and implemented mobile object automatic system based on senor networks for telematics. For developing this system, we gather the various sensing data through wireless communication method using zigbee sensor networks and analyze them in monitoring equipment. And we enable the driver to recognize the car state information on the whole by interfacing analyzed data to telematics unit. And, we implemented automatic controller that can control temperature and humidity in car automatically by actuating air conditioner based on the data that was monitored throughout temperature sensor, humidity sensor and brightness sensor based on sensor networks.

Design and Fabrication of a Micro PZT Cantilever Array Actuator for Applications in Fluidic Systems

  • Kim Hyonse;In Chihyun;Yoon Gilho;Kim Jongwon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1544-1553
    • /
    • 2005
  • In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating behavior predicted. The calculated value of the tip deflection was 15 ${\mu}m$ at 5 V. The fabrication process from SIMOX (Separation by oxygen ion implantation) wafer is presented in detail with the PZT film deposition process. The PZT films are characterized by investigating the ferroelectric properties, dielectric constant, and dielectric loss. Tip deflections of 12 ${\mu}m$ at 5 V are measured, which agreed well with the predicted value. The 18 ${\mu}l/s$ leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed.

A Plight Test Method for the System Identification of an Unmanned Aerial Vehicle (무인항공기의 시스템 식별을 위한 비행시험기법)

  • Lee, Youn-Saeng;Suk, Jin-Young;Kim, Tae-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.130-136
    • /
    • 2002
  • In this paper, a flight test method is described for the system identification of the unmanned aerial vehicle equipped with an automatic flight control system. Multistep inputs are applied for both longitudinal mode and lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A programmed mode flight test method provides high-quality flight data for system identification using the flight control computer with the longitudinal and lateral/directional autopilot which enables the separation of each motion during the flight test. In addition, exact actuating input that is almost equivalent to the designed one guarantees the highest input frequency attainable. Several repetitive flight tests were implemented in the calm air in order to extract the consistent system model for the air vehicle. The enhanced airborne data acquisition system endowed the high-quality flight data for the system identification. The flight data were effectively used to the system identification of the unmanned aerial vehicle.

Ultra high precision Dual stage system Using Air bearing and VCM for Nano level Scanning (VCM을 이용한 나노 정밀도 스캐닝 용 초정밀 이중 스테이지)

  • Kim Ki-Hyun;Gweon Dae-Gab;Choi Young-Man;Kim Dong-Min;Nam Byoung-Uk;Lee Suk-Won;Lee Moon-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.103-112
    • /
    • 2005
  • This paper presents one-axis high precision scanning system and illustrates the design of modified $X-Y-{\theta}$ stage as a tracker using VCM and commercialized air bearings for it. The scanning system for 100nm resolution is composed of the 3-axis stage and one axis long stroke linear motor stage as a follower. In this study a previous proposed and presented structure of VCM for the fine stage is modified. The tracker has 3 DOF($X-Y-{\theta}$ motions by four VCM actuators which are located on the same plane. So 4 actuating forces are suggested and designed to create least pitch and roll motions. This article will show about the design especially about optimal design. The design focus of this fine stage is to have high acceleration to accomplish high throughput. The optimal design of maximizing acceleration is performed in restrained size. The most sensitive constraint of this optimal design is heat dissipation of coil. There are 5 design variables. Because the relationship between design variables and system parameters are quite complicated, it is very difficult to set design variables manually. Due to it, computer based optimal design procedure using MATLAB is used. Then, this paper also describes the procedures of selecting design variables for the optimal design and a mathematical formulation of the optimization problem. Based on the solution of the optimization problem, the final design of the stage is also presented. The results can be verified by MAXWELL. The designed stage has the acceleration of about 5 $m/s^{2}$ with 40kg total mass including wafer chuck and interferometer mirror. And the temperature of coil is increased $50^{\circ}C$. In addition, the tracker is controlled by high precision controller system with HP interferometer for it and linear scaler for the follower. At that time, the scanning system has high precision resolution about 5nm and scanning resolution about 40nm in 25mm/s constant speed

Experimental Study on Compressibility Modulus of Pressure Compensation Oil for Underwater Vehicle (심해 장비용 압력보상유의 압축성 계수 측정을 위한 실험적 연구)

  • Kim, Jin-Ho;Yoon, Suk-Min;Hong, Sup;Min, Cheon-Hong;Sung, Ki-Young;Yeu, Tae-Kyeong;Choi, Hyuek-Jin;Lee, Seung-Guk
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.73-80
    • /
    • 2015
  • In order to determine the appropriate volume of the a pressure compensator of deep seabed mining robots, this paper reports on an experimental test for oil volume change in an oil-filled box. At the design stage of underwater robots, it is crucial to determine the capacity of the hydraulic compensator which is replenished as much as the contracted oil volume of the robots. A pilot mining robot, MienRo was designed to work under 6,000 m in the deep sea. The hydraulic actuating oil and pressure compensating oil of MineRo may be exposed at a hydrostatic pressure environment of 600 bar. Although the oil can be assumed to be incompressible, its volume is actually changed under high pressure conditions due to air contained in the oil and oil contraction. To determine the capacity of the pressure compensator, the oil contraction rate should be verified through an experimental test using a hyperbaric chamber.