DOI QR코드

DOI QR Code

Design and Analysis of IPMC Actuator-driven ZNMF Pump for Air Flow Control of MAV's Wing

IPMC 작동기로 구동되는 초소형 비행체 날개의 공기흐름 조절용 ZNMF(zero-net-mass-flux) 펌프의 예비설계 및 해석

  • Published : 2006.03.31

Abstract

In this paper, a systematic design method on an IPMC(ionic polymer-metal composite)-driven ZNMF(zero-net-mass-flux) pump is introduced for the flow control of an MAV's (micro air vehicle) wing. Since the IPMC is able to generate a large deformation under a low input voltage along with its ability to operate in air, and is easier to be manufactured in a small size, it is considered to be an ideal material of the actuating diaphragm. Through the numerical methods, an optimal shape of the IPMC diaphragm was found for maximizing the stroke volume. Based on the optimal IPMC diaphragm, a proto-type ZNMF pump with a slot, was designed. By using the flight speed of the MAV considered in this work, the driving frequencies(~ 40 Hz) of IPMC diaphragm, and the flow velocity through the pump's slot, the calculated non-dimensional frequency and the momentum coefficient ensure the feasibility of the designed ZNMF pump as a flow control device.

본 논문은 초소형 비행체 날개 주위의 공기흐름 조절을 위한 IPMC 작동기로 구동되는 ZNMF 펌프의 체계적인 설계 및 해석 기법을 소개한다. IPMC는 낮은 인가전압에서 큰 굽힘 변위를 발생시키며, 공기 중에서도 작동이 가능하고, 작은 크기로 손쉽게 제작할 수 있기 때문에 소형 펌프의 작동 막으로 매우 적합한 재료이다. 본 연구에서는 수치해석 기법을 이용하여 최대 작동 체적을 발생시키는 IPMC 작동 막의 최적 형상을 찾고, 이러한 최적형상에 기초하여 슬롯을 갖는 ZNMF 펌프를 설계하였다. 이후 초소형 비행체의 비행속도, 펌프 작동 막의 구동 주파수(~ 40 Hz), 슬롯을 통과하는 공기의 속도 등을 이용하여 무차원화 된 진동수와 모멘텀 계수를 구하였고, 설계된 ZNMF 펌프가 초소형 비행체 날개의 공기흐름 조절에 적용이 가능함을 보였다.

Keywords

References

  1. Kral L. D., 'Active flow control technology', ASME Fluids Engineering Technical Brief, 2000
  2. Seifert A., and Pack L., 'Oscillatory control of separation at high Reynolds numbers', AIAA Journal, Vol. 37, 1999, pp.1062-1071 https://doi.org/10.2514/2.834
  3. Seifert A., and Pack L., 'Oscillatory excitation of unsteady compressible flows over airfoils at flight Reynolds numbers', AIAA Paper 99-0925, 1999
  4. Schatz M., and Thiele F., 'Numerical study of high-lift flow with separation control by periodic excitation', AIAA Paper 2001-0296, 2001
  5. Gilarranz J. L., and Rediniotis O. K., 'Compact, high-power synthetic jet actuators for flow separation control', AIAA Paper 2001-0737, 2001
  6. Mallinson S. G., Reizes J. A., and Hillier R., 'The interaction between a compressible synthetic jet and a laminar hypersonic boundary layer', Flow, Turbulence and Combustion, Vol. 66, 2001, pp.1-21 https://doi.org/10.1023/A:1011468910521
  7. Lockerby D., 'Numerical simulation of boundary-layer control using MEMS actuation', Ph.D. Thesis, The University of Warwick, UK, 2001
  8. Lee C., Hong G., Ha Q. P., and Mallinson S. G., 'A piezoelectrically actuated micro synthetic jet for active flow control', Sensors and Actuators A: Physical, Vol. 108, 2003, pp.168-174 https://doi.org/10.1016/S0924-4247(03)00267-X
  9. Shahinpoor M., and Kim K. J., 'Ionic polymer-metal composites: I. Fundamentals', Smart Materials and Structures, Vol. 10, 2001, pp.819-833 https://doi.org/10.1088/0964-1726/10/4/327
  10. Kim K. J., and Shahinpoor M., 'Ionic polymer-metal composites: II. Manufacturing techniques', Smart Materials and Structures, Vol. 12, 2003, pp.65-79 https://doi.org/10.1088/0964-1726/12/1/308
  11. Shahinpoor M., and Kim K. J., 'Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles', Smart Materials and Structures, Vol. 13, 2004, pp.1362-1388 https://doi.org/10.1088/0964-1726/13/6/009
  12. Nemat-Nasser S., and Li J. Y., 'Electromechanical response of ionic polymer-metal composites', Journal of Applied Physics, Vol. 87, 2000, pp.3321-3331 https://doi.org/10.1063/1.372343
  13. Bennett M., and Leo D. J., 'Ionic liquids as stable solvents for ionic polymer transducers,' Sensors and Actuators A: Physical, Vol. 115, pp.79-90, 2004 https://doi.org/10.1016/j.sna.2004.03.043
  14. 이상기, 박훈철, 김광진, 윤광준, '등가 보 및 등가 바이모프보를 이용한 IPMC 작동기 모델링', 제어.자동화.시스템공학회 논문지, 제10권 11호, pp. 1012-1016, 2004
  15. Newbury K. M., and Leo D. J., 'Linear electromechanical model of ionic polymer transducers - Part I: Model development', Journal of Intelligent Material Systems and Structures, Vol. 14, 2003, pp.333-342 https://doi.org/10.1177/1045389X03034976
  16. Newbury K. M., and Leo D. J., 'Linear electromechanical model of ionic polymer transducers - Part II: Experimental Validation', Journal of Intelligent Material Systems and Structures, Vol. 14, 2003, pp.343-357 https://doi.org/10.1177/1045389X03034977
  17. Hwang H. C., Chung D. K., Yoon K. J., Park H. C., Lee Y. J., and Kang T. S., 'Design and flight test of a fixed wing MAV', AIAA Paper 2002-3413, 2002
  18. MSC.Software Corp, MSC/NASTRAN user's manual, 2001
  19. Taleghani B. K., and Campbell J. F., 'Non-linear finite element modeling of THUNDER piezoelectric actuators', NASA/TM-1999-209322, 1999
  20. 임상민, 이상기, 박훈철, 윤광준, 구남서, '압전 작동기 LIPCA를 이용한 형상가변의 설계 및 작동구현', 한국항공우주학회지, 제31권 제10호, pp. 34-39, 2003
  21. Park H. C., Kim K. J., Lee S. K., and Chah Y. J., 'Electromechanical flapping produced by ionic polymer-metal composites', SPIE 11th Annual International Symposium on Smart Structures and Materials, Paper 5385-63, 2004
  22. Nam J. D., Lee J. H., Lee J. H., Choe H., Kim K. J., and Tak Y. S., 'Water uptake and migration effects of electroactive IPMC(ion-exchange polymer metal composite) actuator', Sensors and Actuators A: Physical, Vol. 118, 2005, pp.98-106 https://doi.org/10.1016/j.sna.2004.07.001
  23. Shahinpoor M., and Kim K. J., 'Solid-state polymeric sensors, transducers, and actuators, US Patent Application 20020050454 (May 2, 2002)