• 제목/요약/키워드: Air Spring

검색결과 836건 처리시간 0.029초

폭연방지기 스프링의 구조해석에 관한 연구 (A study of Flame Arrestor's Spring Structural Analysis)

  • 팜민억;김부기;김준호;최민선;양창조
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2017년도 추계학술발표회
    • /
    • pp.69-69
    • /
    • 2017
  • Flame arrestor as end of line flame arrester for endurance burning prevents a light-back at deflagration and stabilized burning (during and after endurance burning) of potentially explosive vapor-air and gas-air mixtures at the end of vent pipes. In a flame arrestor, spring is an important part. The spring load as well as the spring's elasticity determine when the hood is opened. In addition, the spring have to work in high temperature condition due to gas burning. Therefore, it is necessary to analyze mechanical load and elasticity of spring when gas is burned. Based on the dynamic calculation on working process of a specific flame arrestor, analysis of spring is taken. A three dimensional model for spring burned in flame arrestor by using CFD simulation. Results of the CFD analysis are input in FEM simulation to analyze structure of the spring. The simulation results can predict and estimate the spring's load and elasticity at variation of the spring's deflection. Moreover, the obtained result can provide makers with references to optimize design of spring as well as flame arrestor.

  • PDF

반도체 생산에서 진동 제어를 위한 전자기 에어 스프링 (An Electro-magnetic Air Spring for Vibration Control in Semiconductor Manufacturing)

  • 김형태;김철호;이강원;이규섭;손성완
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1128-1138
    • /
    • 2010
  • 정밀 방진에서 전형적인 문제로 고하중으로 인한 저주파 공진 특성이 있다. 전자기 에어 스프징은 진동 제어 장치이자 능동형 방진 장치이다. 이 연구에서 전자기 에어 스프링은 반도체 생산을 위한 저주파 공진을 제거하는 것을 목적으로 한다. 능동형 방진 장치로 기계 및 전가 부분은 2.5톤의 하 중에 작동되도록 설계하였다. 전자기 스프링은 탄성 공압 챔버 내에 공기압을 이용하여 띄우고, 전자기 된 시스템에 의하면 공진 주파수 영역에서 제어 시간 및 최고 피크가 상당히 줄어들었고, 그 결과 피동형 시스템 상의 고유 진동에 의해 발생되는 공진을 피할 수 있음을 보였다.

자동차 공기현가 공압회로 해석 및 대체회로 설계 (Analysis and Alternative Circuit Design of Pneumatic Circuit for An Automotive Air Suspension)

  • 이재천
    • 유공압시스템학회논문집
    • /
    • 제5권4호
    • /
    • pp.17-25
    • /
    • 2008
  • This study presents an analytical model of the pneumatic circuit of an air suspension system to analyze the characteristics of vehicle height control. The analytical model was developed through the co-simulation of Simulink(air spring) and HyPneu(pneumatic circuit). Variant effective area of air spring and flow coefficients of pneumatic valves were estimated experimentally prior to the system test, and utilized in simulation. One-comer test apparatus was established using the components of commercial air suspension products. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the frictional loss of conduit and heat dissipation which were ignored in this study need to be considered in future study. As an application example of proposed analytical model, an alternative pneumatic circuit of air suspension to conventional WABCO circuit was evaluated. The comparison of simulation results of WABCO circuit and alternative circuit show that proposed analytical model of co-simulation in this study is useful for the study of pneumatic system of automotive air suspension.

  • PDF

기상인자가 대기오염에 미치는 영향 (The Influence of Climatic Conditions on Air Pollution in Seoul)

  • 어수미;김광진;이규남
    • 한국환경보건학회지
    • /
    • 제23권4호
    • /
    • pp.104-114
    • /
    • 1997
  • This study was carried out to research the influence of climatic conditions including wind direction, wind speed on air pollution in Seoul. The data were obtained from the 4 sites of air pollution monitoring stations in Seoul from '95 to '96, and analyzed statistically by SAS program. The results were as follows 1. The prevailing wind directions by season in each site were as follows Nangajwa-dong were showed SE in spring, fall, winter and WNW in summer. Ssangmun-dong were showed NW in spring, fall, winter and NNE in summer. Kuro-dong were showed SW in spring, summer, ENE in fall and NW in winter. Bangi-dong were showed WNW in four seeasons. 2. The concentrations of 5 kinds(SO$_2$, Dust, NO$_2$, CO, THC) of air pollutants were relatively low in west wind. In case of O$_3$ was opposite. 3. The concentrations of 5 kinds of air pollutants were increase with decreasing wind speeds. 4. The washing effects of air pollution by rain were significant. The concentrations of 5 kinds of air pollutants were high when the humidity were 61-80%, and low as it were 0-20%. In case of O$_3$ was opposite. 5. All of air pollutants concentrations but O$_3$ were high when the UV intensity level and temperature within the range of above zero were low level.

  • PDF

Vinyl House 내의 환경조건과 인체적응에 관한 실험연구 (A Study on Experiments the Environmental Conditions and the Adaptation of the Human Body in the Vinyl House)

  • 심부자
    • Journal of Preventive Medicine and Public Health
    • /
    • 제27권1호
    • /
    • pp.59-73
    • /
    • 1994
  • The purpose of this study is to experiments the environmental conditions and the adaption of the human body in the vinyl house. The study was done in spring and winter and experimental clothes were used working clothes in the vinyl house. The results are as follows. 1. Environmental Conditions In the spring season, the indoor air temperature was $27.4{\pm}3.7^{\circ}C$ and the outdoor air temperature was $14.4{\pm}2.7^{\circ}C$. In the winter season, the indoor air temperature was $18.3{\pm}4.8^{\circ}C$ and the outdoor air temperature was $7.6{\pm}2.5^{\circ}C$ on the average. 2. Skin Temperature In the spring season, the mean skin temperatures indoor and outdoor were $33.81{\pm}0.7^{\circ}C\;and\;31.57{\pm}0.8^{\circ}C$ respectively, a difference of $2.24^{\circ}C$. In the winter season, they were $31.95{\pm}1.93^{\circ}C\;and\;29.86{\pm}0.55^{\circ}C$ respectively, a difference of $2.09^{\circ}C$. 3. Clothing Climate In the spring season, the temperature and humidity in the inner layer of clothing were $34.77{\pm}0.80^{\circ}C\;and\;70.75{\pm}1.65%$ indoor, $31.9{\pm}0.52^{\circ}C\;and\;51.9{\pm}3.70%$ outdoor respectively. In the winter season, those were $32.52{\pm}1.04^{\circ}C\;and\;64.65{\pm}3.68%$ indoor, $30.27{\pm}0.96^{\circ}C\;and\;45.07{\pm}2.68%$ outdoor respectively. 4. Physiological Factors Body temperature increased slightly and the pulse rate also rises, but blood pressure decreased a little with the rise of environmental temperature both in the spring and winter seasons. 5. Psychological Factors Thermal sensation in the spring season was expressed as 'slightly warm' or 'warm' indoor and as 'neutral' in the open air, while in the winter it was expressed as 'neutral' or 'slightly warm' outdoor the house and as 'cold' in the open air. Comfort sensation was characterized as 'uncomfortable' or 'slightly uncomfortable' indoor both in the spring and winter seasons, but in the open air it was characterized as 'comfortable' in the spring and as 'slightly uncomfortable' in the winter.

  • PDF

고무 공기 스프링용 CR/Nylon 6 코드 고무 슬리브에 대한 연구 (Research on CR/Nylon 6 Cord Rubber Sleeve of Rubber Air Spring)

  • 서재찬;김대진;박해윤;서관호
    • Elastomers and Composites
    • /
    • 제49권4호
    • /
    • pp.293-304
    • /
    • 2014
  • 고무 공기 스프링(rubber air spring)은 자동차, 철도차량 등 수송기기의 서스펜션 장치로 사용되고 있다. 고무 공기 스프링은 고무 에어백의 압축과 팽창을 통한 탄성효과로 스프링의 역할을 한다. 고무 공기 스프링의 주요 구성요소 중 하나가 고무 슬리브(rubber sleeve)이다. 고무 슬리브는 주요 구성성분인 클로로프렌 고무와 나일론 6 코드 간의 접착이 매우 중요하다. 본 연구에서는 첨가제의 영향을 고려한 고무 슬리브의 최적 배합조성과 조건을 찾기 위해 다양한 물성시험을 하였다. 또한, 보강섬유의 최적 배향을 선정하기 위해 유한요소해석법을 이용한 수치해석을 수행하였다. 고무 공기 스프링을 제조하여 실제 차량에 장착하여 기초물성과 피로수명 및 기밀성을 시험하였다.

3차원 셸 요소를 이용한 섬유보강 고무모재 공기 스프링의 유한요소해석 (Finite Element Analysis of Air Springs with Fiber-Reinforced Rubber Composites Using 3-D Shell Elements)

  • 이형욱;허훈
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.602-609
    • /
    • 2001
  • This paper is concerned with the orthotropic problem of diaphragm-type air springs which consist of rubber linings, nylon reinforced rubber composite and bead ring. The analysis is carried out with a finite element method developed to consider the orthotropic properties, geometric nonlinearity using four-node degenerated shell element with reduced integration. Physical stabilization scheme is used to control the zeroenergy mode of the element. The analysis includes an inflation analysis and a lateral analysis of an air spring for the deformed shape and the spring load with respect to the vertical and l ateral deflection. Numerical results demonstrate the variation of the outer diameter, the fold height, the vertical force and the lateral force with respect to the inflation pressure and the lateral deflection.