• Title/Summary/Keyword: Air Intake

검색결과 600건 처리시간 0.028초

압축착화 엔진에서 디젤-가솔린 Dual Fuel이 연소 및 배기 특성에 미치는 영향 (Fuel Injection System on Combustion and Exhaust Emissions Characteristics in Compression Ignition Engines)

  • 권석주;차준표;성기안;박성욱
    • 한국연소학회지
    • /
    • 제16권1호
    • /
    • pp.52-57
    • /
    • 2011
  • The present study describes the characteristics of combustion and exhaust emissions in compression ignition engines using diesel-gasoline dual fuel. For investigating combustion characteristics, diesel fuel was injected directly in a single-cylinder compression ignition engine with a common-rail injection system and gasoline fuel was injected into a premixed chamber installed in an intake port. In order to investigate exhaust emission characteristics, exhaust gas was measured by emission analyzer and smoke meter. The experimental results showed that cases of diesel-gasoline dual fuel combustion exhibited extended ignition delay and reduced peak combustion pressure compared to those of directly injected diesel fuel cases. Furthermore, premixed gasoline-air mixture reduced NOx emissions due to low peak of rate of heat release(ROHR).

HSDI 디젤엔진의 연료분사계와 연소현상을 연계한 수치해석 (Coupled Simulation of Common Rail Fuel Injection and Combustion Characteristics in a HSDI Diesel Engine)

  • 이석영;허강열
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, the coupled simulation of fuel injection model and three-dimensional KIVA-3V code was tried to develop an algorism for predicting the effects of varying fuel injection parameter on the characteristics of fuel injection and emissions. The numerical simulations were performed using STAR-CD code in order to calculate the intake air flow, and the combustion characteristics is examined by KIVA-3V code linked with the conditional moment closure(CMC) model to predict mean turbulent reaction rate. Parametric investigation with respect to twelve relevant injection parameters shows that appropriate modification of control chamber orifice diameter, needle valve spring constant and nozzle chamber orifice diameter can significantly reduce NOx and soot emissions. Consequently, it is needed to optimize the fuel injection system to reduce the specific emissions such as NOx and soot.

경부를 관통한 후두 내 금속이물 1예 (A Case of Intralaryngeal Metallic Foreign Body which Penetrated by Transcutaneous Route)

  • 최지훈;우정수;이승훈;이흥만
    • 대한기관식도과학회지
    • /
    • 제9권1호
    • /
    • pp.92-95
    • /
    • 2003
  • Laryngeal foreign bodies are not common among the foreign bodies of aerodigestive tract. It is relatively easy to diagnose in acute phase of entry because of a readily\ulcorner available history of intake, and signs or symptoms referable to the foreign body in the highly sensitive air passage. However, on occasion, sudden death by respiratory failure occurs due to complete obstruction of airway. Therefore, it is common and safe to remove the laryngeal foreign bodies by suspension laryngoscope under general anesthesia after tracheostomy. Recently, the authors experienced a case of metallic foreign body in larynx penetrating neck, which was removed by suspension laryngoscope under general anesthesia without any life threatening complication.

  • PDF

Uni-flow 소기방식 2행정 프리피스톤 수소기관의 스트로크변화에 따른 역화 특성 (The Characteristics of Backfire for 2 stroke Free-Piston Hydrogen Fueled Engine with Uni-flow Scavenging)

  • 조관연;조형욱;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.371-377
    • /
    • 2009
  • Backfire characteristics for hydrogen fueled free piston engine with uni-flow scavenging is investigated with different stroke, exhaust vlave openning timing and fuel-air equivalence ratio by using RICEM (Rapid Intake Compression Expansion Machine) for combustion research of free piston engine. As results, it is found that backfire can be occurred due to slow combustion of unhomogeneous mixture in the piston crevice volume or/and in the cylinder near piston head. And the more stroke of free piston H2 engine with uni-flow scavenging is short the more opening timing of exhaust valve have to be advanced to control backfire.

린-번 엔진 개발 (The Development of Lean-Burn Eng.)

  • 이태표;임국현;김종부;김민형;안두수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.1005-1008
    • /
    • 1999
  • HMC has developed the lean burn system with alpha 4-valve into domestic market in the end of 1997. In a viewpoint of saving energy and prevention of global warming (CO2 reduction), the lean burn system has recently attracted a considerable attentions in gasoline engines. There has been, however, difficulty in extending LML(Lean Misfire Limit) enough to meet the emission regulations and satisfaction of driveability. In this paper some descriptions will be given upon the new technology of lean bum engine which will be installed in Accent, especially the improvement of the combustion, the development of engine management system such as intake system and wide range air fuel control strategy, and the result of vehicle test.

  • PDF

비선형 슬라이딩 모드 제어기 및 관측기를 이용한 엔진 공회전 제어 (Engine Idle Speed Control Using Nonlinear Sliding Mode Controller and Observer)

  • 오소력;최재원;김종식
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.151-157
    • /
    • 1999
  • In this paper, an integrated nonlinear sliding mode observer and controller has been designed in order to control of an automotive engine idle speed. The primary objective of the engine idle speed control is to maintain the desired engine idle speed despite of various torque disturbances via estimating air mass flow at the location of the injector in intake manifold by using a sliding mode observer. Simulation results show that the case where both throttle angle and ignition time are used as control inputs outperforms the case where just only throttle angle is used as a control input.

  • PDF

디젤동차의 동력장치 관련 설계 고려 사항 (Considerations on Design with related to Propulsion System of Diesel Multiple Unit)

  • 고동우;염규학;유현규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1639-1645
    • /
    • 2007
  • The Diesel Multiple Units (DMU) can be classified into three types by the type of the transmission. One of those is a Diesel Hydraulic Multiple Unit which is operated with a hydraulic transmission and its propulsion system consists of a diesel engine, transmission, cooling unit, fuel system, intake air and exhaust system, etc. In designing and integrating the propulsion system components, the operation and environment conditions should be considered as well as related standards. This paper describes points to be considered on design with related to propulsion system of Diesel Hydraulic Multiple Unit that is now being developed for Turkish Republic State Railway -TCDD.

  • PDF

수소첨가 가솔린기관의 희박한계 및 희박연소특성에 관한 연구 (A Study on Lean Limit and Combustion Characteristics of Hydrogen Supplemented Gasoline Engine)

  • 조태희;김창현;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제6권1호
    • /
    • pp.23-34
    • /
    • 1995
  • In order to realize the ultra lean burn, the method of hydrogen supplement in gasoline engine has been examined and analyzed. A small quantity of hydrogen gas was supplied and mixed with gasoline fuel in the intake manifold. As the results, lean limit was extended to fuel-air equivalence ratio 0.35 which normal combustion was impossible by gasoline fuel. The NO and CO were remarkably decreased, and thermal efficiency and torque were increased. It was also found that by considering cycle variation, emission characteristics, torque and thermal efficiency, suitable operate region of hydrogen supplemented gasoline engine was equivalence ratio 0.5.

  • PDF

고분자 전해질형 연료전지 자동차의 급기 시스템의 동적 모델링 및 분석 (Dyamic Modeling and Analysis of Air Supply System for Vehicular PEM Fuel Cell)

  • 장현탁
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.175-186
    • /
    • 2004
  • In this paper, we developed the dynamic model of a fuel cell system suitable for controller design and system operation. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the intake manifold filling dynamics, oxygen partial pressures and membrane humidity on the fuel cell voltage. In the simulations, we paid attention to the transient behavior of stack voltage and compressor pressure, stoichiometric ratio. Simulation results are presented to demonstrate the model capability. For load current following, stack voltage dynamic characteristics are plotted to understand the Electro-chemistry involved with the fuel cell system. Compressor pressure and stoichiometric ratio are strongly coupled, and independent parameters may interfere with each other, dynamic response, undershoot and overshoot.

초음속 흡입구 형상 설계 및 Bleeding을 활용한 유동제어 연구 (Supersonic Intake Design & Flow Control Analysis using Bleeding Condition)

  • 최재환;천소민;김종암
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제1회(2012년)
    • /
    • pp.77-80
    • /
    • 2012
  • 초음속 흡입구는 설계점에서 안정적으로 작동하지만 설계점 밖에서는 엔진성능이 급격히 감소하거나 층 격파 불안정 문제가 발생할 수 있다. 초음속 흡입구의 일반적인 특성을 파악하기 위해 2단 꺾임각을 갖는 외부 압축식 2차원 흡입구를 설계하고 EDISON_열유체 시스템을 이용하여 최종적으로 설계 마하수 2.5에서 작동하는 형상을 얻었다. 그러나 설계 마하수 이하의 영역에서는 충격파-경계층, 충격파간 상호작용으로 인해 유동에서 박리가 발생하고 최종적으로 흡입구 목을 질식시켜 아임계 상태로 천이된다. 이를 해결하기 위해 유동 제어 방법 중 하나인 bleeding을 이용하여 경계층을 제거하거나 유동의 박리를 방지하여 충격파를 cowl lip 전방에 안정하게 고정시킬 수 있었으며, 결과적으로 목적하였던 마하수 2.0에서 2.5에 이르는 작동 영역에서 강건하게 운용될 수 있는 초음속 흡입구를 설계하였다.

  • PDF