• Title/Summary/Keyword: Agrivoltaic system

Search Result 10, Processing Time 0.021 seconds

Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System (영농형 태양광 시설 하부 논에서의 농업환경 관측 및 시설 외부 환경과의 비교)

  • Kang, Minseok;Sohn, Seungwon;Park, Juhan;Kim, Jongho;Choi, Sung-Won;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.

Study on Forage Production under Agrivoltaic System (영농형 태양광 시스템 하부를 활용한 조사료 생육 연구)

  • Nam, Cheol Hwan;Park, Man Ho;Yun, An A;Ji, Hee Jung;Choi, Bo ram;Sun, Sang Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • In the winter forage study, Italian ryegrass(IRG) and barley were selected. In 2018, the dry matter yield of IRG was 16,915kg per ha under the Agrivoltaic System; this was a little more than 16,750kg per ha of outdoors. On the contrary, the dry matter yield of barley was slightly less under the Agrivoltaic System than that of outdoors. In 2019, the dry matter yield under the Agrivoltaic System was 12,062kg per ha for IRG and 12,195kg per ha for the barley; this was 5.4% and 11.5% less than that of outdoors, respectively. In the summer forage study, corn and sorghum×sudangrass were selected. In 2019, the dry matter yield of corn under the Agrivoltaic System was 13,133kg per ha which was 17% less than that of outdoors. The dry matter yield of sorghum×sudangrass was 12,450kg per ha, which was 82.5% of that of outdoors. In 2020, the dry matter yield of corn under the Agrivoltaic System was 8,033kg per ha which was 7.9% less than that of outdoors. The dry matter yield of sorghum×sudangrass was 5,651kg per ha, which was 11.4% less than that of outdoors.

Simulation of Solar Irradiance Distribution Under Agrivoltaic Facilities (영농형 태양광 발전 시설 하부의 일사량 분포 모의)

  • Jeong, Young-Joon;Lee, Sang-Ik;Lee, Jong-Hyuk;Seo, Byung-Hun;Kim, Dong-Su;Lee, Jimin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.1-13
    • /
    • 2022
  • Agrivoltaic facility is the composite system that the solar panel is installed above the farmland, and it enables crop and electricity production simultaneously. Solar panels of the agrivoltaic facilities can block and reduce the amount of solar irradiance arriving at the farmland, but it can help the crop growth by preventing excessive solar irradiance. Therefore, to clarify how the agrivoltaic facilities affect the crop growth, precise solar irradiance distribution under the solar panel should be modeled. In this study, PAR (photosynthetically active radiation), radiation from 400 to 700 nm, which crops usually use to grow, was extracted from the total irradiance and its distribution model under various conditions was developed. Monthly irradiance distributions varied because the elevation of the sun was changed over time, which made the position changed that the local maximum and minimum irradiance appear. The higher panel height did not cause any significant difference in the amount of irradiance reaching below the solar panel, but its distribution became more uniform. Furthermore, the panel angles with the most irradiance arriving below the solar panel were different by month, but its difference was up to 2%p between the irradiance with 30° angle which is usually recommended in Korea. Finally, the interval between panels was adjusted; when the ratio of the length of the panel to the empty space was 1:2, the irradiance of 0.719 times was reached compared to when there was no panel, 0.579 times for 1:1 and 0.442 times for 2:1.

Integral Design and Structural Analysis for Safety Assessment of Domestic Specialized Agrivoltaic Smart Farm System (한국형 영농형 태양광 스마트팜 시스템의 종합설계 및 구조해석을 통한 안전성 검토)

  • Lee, Sang-ik;Kim, Dong-su;Kim, Taejin;Jeong, Young-joon;Lee, Jong-hyuk;Son, Younghwan;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.21-30
    • /
    • 2022
  • Renewable energy systems aim to achieve carbon neutrality and replace fossil fuels. Photovoltaic technologies are the most widely used renewable energy. However, they require a large operating area, thereby decreasing available farmland. Accordingly, agrivoltaic systems (AVSs)-innovative smart farm technologies that utilize solar energy for crop growth and electricity production-are attracting attention. Although several empirical studies on these systems have been conducted, comprehensive research on their design is lacking, and no standard model suitable for South Korea has been developed. Therefore, this study created an integral design of AVS reflecting domestic crop cultivation conditions and conducted a structural analysis for safety assessment. The shading ratio, planting distance, and agricultural machinery work of the system were determined. In addition, national construction standards were applied to evaluate their structural safety using a finite element analysis. Through this, the safety of this system was ensured, and structural considerations were put forward. It is expected that the AVS model will allow for a stable utilization of renewable energy and smart farm technologies in rural areas.

Grapevine Growth and Berry Development under the Agrivoltaic Solar Panels in the Vineyards (영농형 태양광 시설 설치에 따른 포도나무 생육 및 과실 특성 변화 비교)

  • Ahn, Soon Young;Lee, Dan Bi;Lee, Hae In;Myint, Zar Le;Min, Sang Yoon;Kim, Bo Myung;Oh, Wook;Jung, Jae Hak;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.356-365
    • /
    • 2022
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. The agrivoltaic systems are expected to reduce the incident solar radiation, the consequent surface cooling effect, and evapotranspiration, and bring additional income to farms through solar power generation by combining crops with solar photovoltaics. In this study, to evaluate if agrivoltaic systems are suitable for viticulture, we investigated the microclimatic change, the growth of vines and the characteristics of grape grown under solar panels set by planting lines compared with ones in open vineyards. There was high reduction of wind speed during over-wintering season, and low soil temperature under solar panel compared to those in the open field. There was not significant difference in total carbohydrates and bud burst in bearing mother branches between plots. Despite high content of chlorophyll in vines grown under panels, there is no significant difference in shoot growth of vines, berry weight, cluster weight, total soluble solid content and acidity of berries, and anthocyanin content of berry skins in harvested grapes in vineyards under panels and open vineyards. It was observed that harvesting season was delayed by 7-10 days due to late skin coloration in grapes grown in vineyards under panels compared to ones grown in open vineyards. The results from this study would be used as data required in development of viticulture system under panel in the future and further study for evaluating the influence of agrivoltaic system on production of crops including grapes.

Effects of Shading on the Growth and Chlorophyll Fluorescence under Agrivoltaic System Conditions

  • Hoejeong Jeong;Myeong-Gue Choi;Woon-Ha Hwang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.120-120
    • /
    • 2022
  • Agrivoltaic System (AVS) was introduced with the concept that it could generate electricity by using the extra light remain after crops use for photosynthesis in farm, which can earn additional income. However, crop yield was declined under the AVS condition due to the decrease in light energy. In the past, many researchers have been studied about crop states under shading conditions. However, the phenomenon of partial shading such as under the AVS is not well studied. In this study, to figure out the response of crop under the different light conditions, the electron transport rate (ETR) and non-photochemical quenching (NPQ) of rice was investigated using the chlorophyll fluorescence measurement. Also, physiological changes of crops under the shading conditions were investigated. The growth experiment under partial shading under AVS and overall shading which made of 35% shade cloth was conducted to understand the eco-physiological responses of rice to light in terms of the photosynthesis. Under the shading conditions, SPAD value and chlorophyll contents were higher, but the leaf thickness was lower than control. The overall shading condition show lower ETR than others during the growing season. In contrast, NPQ was higher than other treatments. This means the available light energy cannot contribute to photosynthesis under the shading condition.

  • PDF

Changes of Soil Temperature and Moisture under the Agrivoltaic Systems in Fallow Paddy Field during Spring Season (봄철 영농형 태양광 시설 하부 휴경논 토양의 온도와 수분 변화)

  • Yuna Cho;Euni Cho;Jae-Hyeok Jeong;Hoejeong Jeong;Woon-Ha Hwang;Jaeil Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.218-225
    • /
    • 2023
  • An agrivoltaic system (AVS) is a combined system that generates power through photovoltaic panels (PVPs) installed above a field where a crop is cultivated. Although soil moisture is an important limiting factor for open-field crop production, particularly during spring season in Korea, it is not well considered in the utilization of AVS. Indeed, the application of water-energy-food nexus on the AVS should be necessary. In this study, the changes of soil moisture and temperature under the AVS was investigated in fallow paddy field during spring season. The AVS that has partial shading condition by PV panels was decreased soil temperature and increased soil moisture compared to open-field. Furthermore, the maximum of the change in soil moisture to the change in soil temperature had a negative correlation both on open-field and AVS under wet condition. It represents that the micro-climate under the AVS is in energy-limited condition. The open-field of relatively high soil temperature was in water-limited condition. The different behavior of soil moisture on the AVS should be considered for the sustainable agricultural system as related to water-energy-food nexus.

Effect of Partial Shading by Agrivoltaic Systems Panel on Electron Transport Rate and Non-photochemical Quenching of Crop (영농형 태양광 패널의 부분 차광 생육 환경이 작물 전자전달효율과 비광화학적 형광소멸에 미치는 영향)

  • Cho, Yuna;Kim, Hyunki;Jo, Euni;Oh, Dohyeok;Jeong, Hoejeong;Yoon, Changyong;An, Kyunam;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.100-107
    • /
    • 2021
  • An agrivoltaic system (AVS) is a system of innovation that comprises productions of photovoltaic power and agricultural crops on the same area. However, the decline in crop yield will be fatally occurred because the pigments of crop absorbs less light energy under AVS. In addtion, the photosynthetic capacity of crop grown under the partial shading of AVS is not well reported. In this study, the electron transport rate (ETR) and non-photochemical fluorescence quenching (NPQ) of soybean and rice under the AVS in Boseong and Naju was investigated using chlorophyll fluorescence measurement. The ETR value of soybean and rice under AVS were not significantly differed by location. It represents that the photophosphorylation rate of the crops is not critically different. It means that the decreases in total photosynthesis under AVS were mostly affected by the amount of light absorbed by leaves. Under AVS the photosynthesis of crops will be lower than field crops grown in open fields. This is because the crops under AVS observed higher NPQ, which means that the available energy cannot distribute to photophosphorylation reaction.

Effects of Overall Shading and Partial Shading on the Response of Chlorophyll Fluorescence of Soybean (전면적차광과 부분차광이 콩 엽록소 형광 반응에 미치는 영향)

  • Cho, Yuna;Jo, Euni;Jeong, Jae-Hyeok;Yoon, Changyong;An, Kyunam;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.163-168
    • /
    • 2021
  • The growth experiment under shading condition has been performed to understand the eco-physiological responses of crops to light in terms of photosynthesis. There are two types of shading: overall shading and partial shading. In this study, the chlorophyll fluorescence of soybean was observed under the overall shading of the box made by polyresin and the partial shading at agrivoltaic system. The overall shading condition during vegetative growth induced lower SPAD and Electron transport rate (ETR). These lower values recovered after removal of shading box. However, the Non-photochemical fluorescence quenching (NPQ) became lower under overall shading and higher under partial shading. Such increase in NPQ limited crop photosynthesis even though the ETR was almost same to the control without shading treatment. Under the condition of partial shading, the values of SP AD and ETR for soybean did not change. However, the NPQ was higher than control condition. This suggests that the crop photosynthesis under both types of shading would be decreased by different eco-physiological processes which are the lower ETR in overall shading and the higher NP Q in partial shading despite the reduced light under shading conditions.

Comparison between Solar Radiation Estimates Based on GK-2A and Himawari 8 Satellite and Observed Solar Radiation at Synoptic Weather Stations (천리안 2A호와 히마와리 8호 기반 일사량 추정값과 종관기상관측망 일사량 관측값 간의 비교)

  • Dae Gyoon Kang;Young Sang Joh;Shinwoo Hyun;Kwang Soo Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.28-36
    • /
    • 2023
  • Solar radiation that is measured at relatively small number of weather stations is one of key inputs to crop models for estimation of crop productivity. Solar radiation products derived from GK-2A and Himawari 8 satellite data have become available, which would allow for preparation of input data to crop models, especially for assessment of crop productivity under an agrivoltaic system where crop and power can be produced at the same time. The objective of this study was to compare the degree of agreement between the solar radiation products obtained from those satellite data. The sub hourly products for solar radiation were collected to prepare their daily summary for the period from May to October in 2020 during which both satellite products for solar radiation were available. Root mean square error (RMSE) and its normalized error (NRMSE) were determined for daily sum of solar radiation. The cumulative values of solar radiation for the study period were also compared to represent the impact of the errors for those products on crop growth simulations. It was found that the data product from the Himawari 8 satellite tended to have smaller values of RMSE and NRMSE than that from the GK-2A satellite. The Himawari 8 satellite product had smaller errors at a large number of weather stations when the cumulative solar radiation was compared with the measurements. This suggests that the use of Himawari 8 satellite products would cause less uncertainty than that of GK2-A products for estimation of crop yield. This merits further studies to apply the Himawari 8 satellites to estimation of solar power generation as well as crop yield under an agrivoltaic system.