Browse > Article
http://dx.doi.org/10.5389/KSAE.2022.64.4.021

Integral Design and Structural Analysis for Safety Assessment of Domestic Specialized Agrivoltaic Smart Farm System  

Lee, Sang-ik (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Seoul National University)
Kim, Dong-su (Department of Rural Systems Engineering, Seoul National University)
Kim, Taejin (Department of Rural Systems Engineering, Seoul National University)
Jeong, Young-joon (Department of Rural Systems Engineering, Seoul National University)
Lee, Jong-hyuk (Department of Rural Systems Engineering, Seoul National University)
Son, Younghwan (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Seoul National University)
Choi, Won (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Global Smart Farm Convergence Major, Seoul National University)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.64, no.4, 2022 , pp. 21-30 More about this Journal
Abstract
Renewable energy systems aim to achieve carbon neutrality and replace fossil fuels. Photovoltaic technologies are the most widely used renewable energy. However, they require a large operating area, thereby decreasing available farmland. Accordingly, agrivoltaic systems (AVSs)-innovative smart farm technologies that utilize solar energy for crop growth and electricity production-are attracting attention. Although several empirical studies on these systems have been conducted, comprehensive research on their design is lacking, and no standard model suitable for South Korea has been developed. Therefore, this study created an integral design of AVS reflecting domestic crop cultivation conditions and conducted a structural analysis for safety assessment. The shading ratio, planting distance, and agricultural machinery work of the system were determined. In addition, national construction standards were applied to evaluate their structural safety using a finite element analysis. Through this, the safety of this system was ensured, and structural considerations were put forward. It is expected that the AVS model will allow for a stable utilization of renewable energy and smart farm technologies in rural areas.
Keywords
Agrivoltaic system (AVS); renewable energy; photovoltaic (PV); smart farm; structural design; safety assessment;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Malu, P. R., U. S. Sharma, and J. M. Pearce, 2017. Agrivoltaic potential on grape farms in India. Sustainable Energy Technologies and Assessments 23: 104-110. doi:10.1016/j.seta.2017.08.004.   DOI
2 Dupraz, C., H. Marrou, G. Talbot, L. Dufour, A. Nogier, and Y. Ferard, 2011. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy 36(10): 2725-2732. doi:10.1016/j.renene.2011.03.005.   DOI
3 Janiak, T., 2017. Crops and solar farms - Solar sharing. https://tomaszjaniak.wordpress.com. Accessed 15 May. 2022.
4 Jeong, J. H., 2020. Current status and prospect of agrophotovoltaic system. Bulletin of the Korea Photovoltaic Society 6(2): 25-33. (in Korean).
5 Kang, M., S. Sohn, J. Park, J. Kim, S. W. Choi, and S. Cho, 2021. Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System. Korean Journal of Agricultural and Forest Meteorology 23(3): 141-148. doi:10.5532/KJAFM.2021.23.3.141. (in Korean).   DOI
6 MOTIE (Ministry of Trade, Industry and Energy), 2017. The 8th Basic Plan for Long-Term Electricity Supply and Demand. Ministry of Trade, Industry and Energy: Sejong, Korea. (in Korean).
7 Elamri, Y., B. Cheviron, J. M. Lopez, C. Dejean, and G. Belaud, 2018. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agricultural Water Management 208: 440-453. doi:10.1016/j.agwat.2018.07.001.   DOI
8 Kim, G. H., 2020. Development of domestic agrophotovoltaic system and analysis of crop growth characteristics. Bulletin of the Korea Photovoltaic Society 6(2): 15-24. (in Korean).
9 Marrou, H., L. Dufour, and J. Wery, 2013. How does a shelter of solar panels influence water flows in a soil-crop system?. European Journal of Agronomy 50: 38-51. doi:10.1016/j.eja.2013.05.004.   DOI
10 Chen, J., Y. Liu, and L. Wang, 2019. Research on coupling coordination development for photovoltaic agriculture system in China. Sustainability 11(4): 1065. doi:10.3390/su11041065.   DOI
11 MOLIT (Ministry of Land, Infrastructure and Transport), 2019a. Building Structure Standard Design Load KDS 41 10 15. Korea Construction Standards Center: Goyang, Gyeonggi, Korea. (in Korean).
12 Lee, S. I., J. Y. Choi, S. J. Sung, S. J. Lee, J. Lee, and W. Choi, 2020. Simulation and analysis of solar radiation change resulted from solar-sharing for agricultural solar photovoltaic system. Journal of the Korean Society of Agricultural Engineers 62(5): 63-72. doi:10.5389/KSAE.2020.62.5.063. (in Korean).
13 Lee, S. I., D. S. Kim, T. J. Kim, J. H. Jeon, J. H. Lee, Y. J. Jeong, B. H. Seo, Y. H. Son, and W. Choi, 2022. Basic design and safety assessment for domestic agrivoltaic system status and standard model development. Magazine of the Korean Society of Agricultural Engineers 64(1): 54-63 (in Korean).
14 Lee, Y. J., S. K. Han, and S. Y. Kim, 2018. A study on the optimal angle setting considering the stability of photovoltaic systems. The Transactions of The Korean Institute of Electrical Engineers 67(4): 498-504. doi:10.5370/KIEE.2018.67.4.498. (in Korean).   DOI
15 Trommsdorff, M., J. Kang, C. Reise, S. Schindele, G. Bopp, A. Ehmann, A. Weselek, P. Hogy, and T. Obergfell, 2021. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renewable and Sustainable Energy Reviews 140: 110694. doi:10.1016/j.rser.2020.110694.   DOI
16 O'Shaughnessy, E., J. R. Cruce, and K. Xu, 2020. Too much of a good thing? Global trends in the curtailment of solar PV. Solar Energy 208: 1068-1077. doi:10.1016/j.solener.2020.08.075.   DOI
17 Weselek, A., A. Ehmann, S. Zikeli, I. Lewandowski, S. Schindele, and P. Hogy, 2019. Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development 39(4): 1-20. doi:10.1007/s13593-019-0581-3.   DOI
18 MOLIT (Ministry of Land, Infrastructure and Transport), 2019b. Steel Structure Design Code (Allowable Stress Design Method) KDS 14 30. Korea Construction Standards Center: Goyang, Gyeonggi, Korea. (in Korean).
19 Nagashima, A., 2015. Change Japan, Change the World! Advise of "Solar Sharing". Tokyo, Mass.: Rick.
20 Sekiyama, T. and A. Nagashima, 2019. Solar sharing for both food and clean energy production: Performance of agrivoltaic systems for corn, a typical shade-intolerant crop. Environments 6(6): 65. doi:10.3390/environments6060065.   DOI
21 Zainol Abidin, M. A., M. N. Mahyuddin, and M. A. A. Mohd Zainuri, 2021. Solar photovoltaic architecture and agronomic management in agrivoltaic system: A review. Sustainability 13(14): 7846. doi:10.3390/su13147846.   DOI
22 Jurasz, J., F. A. Canales, A. Kies, M. Guezgouz, and A. Beluco, 2020. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy 195: 703-724. doi:10.1016/j.solener.2019.11.087.   DOI
23 Lee, S. I., J. J. Lee, J. Y. Choi, W. Choi, and S. J. Seong, 2019. Agricultural solar power generation for sharing solar energy, solar sharing. Magazine of the Korean Society of Agricultural Engineers 61(4): 2-11. (in Korean).
24 Al Mamun, M. A., P. Dargusch, D. Wadley, N. A. Zulkarnain, and A. A. Aziz, 2022. A review of research on agrivoltaic systems. Renewable and Sustainable Energy Reviews 161: 112351. https://doi.org/10.1016/j.rser.2022.112351.   DOI
25 Barron-Gafford, G. A., M. A. Pavao-Zuckerman, R. L. Minor, L. F. Sutter, I. Barnett-Moreno, D. T. Blackett, M. Thompson, K. Dimond, A. K. Gerlak, G. P. Nabhan, and J. E. Macknick, 2019. Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands. Nature Sustainability 2(9): 848-855. doi:10.1038/s41893-019-0364-5.   DOI
26 Goetzberger, A. and A. Zastrow, 1982. On the coexistence of solar-energy conversion and plant cultivation. International Journal of Solar Energy 1(1): 55-69. doi:10.1080/01425918208909875.   DOI
27 Amaducci, S., X. Yin, and M. Colauzzi, 2018. Agrivoltaic systems to optimise land use for electric energy production. Applied Energy 220: 545-561. doi:10.1016/j.apenergy.2018.03.081.   DOI
28 Dias, L., J. P. Gouveia, P. Lourenco, and J. Seixas, 2019. Interplay between the potential of photovoltaic systems and agricultural land use. Land Use Policy 81: 725-735. doi:10.1016/j.landusepol.2018.11.036.   DOI
29 Gielen, D., F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, 2019. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 24: 38-50. doi:10.1016/j.esr.2019.01.006.   DOI
30 Guerin, T. F., 2019. Impacts and opportunities from large-scale solar photovoltaic (PV) electricity generation on agricultural production. Environmental Quality Management 28(4): 7-14. doi:10.1002/tqem.21629.   DOI
31 Hernandez, R. R., A. Armstrong, J. Burney, G. Ryan, K. Moore-O'Leary, I. Diedhiou, S. M. Grodsky, L. Saul-Gershenz, R. Davis, J. Macknick, D. Mulvaney, G. A. Heath, S. B. Easter, M. K. Hoffacker, M. F. Allen, and D. M. Kammen, 2019. Techno-ecological synergies of solar energy for global sustainability. Nature Sustainability 2(7): 560-568. doi:10.1038/s41893-019-0309-z.   DOI
32 Olabi, A. G., and M. A. Abdelkareem, 2022. Renewable energy and climate change. Renewable and Sustainable Energy Reviews 158: 112111. doi:10.1016/j.rser.2022.112111.   DOI