DOI QR코드

DOI QR Code

Effect of Partial Shading by Agrivoltaic Systems Panel on Electron Transport Rate and Non-photochemical Quenching of Crop

영농형 태양광 패널의 부분 차광 생육 환경이 작물 전자전달효율과 비광화학적 형광소멸에 미치는 영향

  • Cho, Yuna (Department of Applied Plant Science, Chonnam National University) ;
  • Kim, Hyunki (Department of Applied Plant Science, Chonnam National University) ;
  • Jo, Euni (Department of Applied Plant Science, Chonnam National University) ;
  • Oh, Dohyeok (Agricultural Resources Research Institute, Gyeonggi Agricultural Research & Extension Services) ;
  • Jeong, Hoejeong (National Institute of Crop Science, Rural Development Administration) ;
  • Yoon, Changyong (Jeollanam-do Agricultural Research & Extension Services) ;
  • An, Kyunam (Jeollanam-do Agricultural Research & Extension Services) ;
  • Cho, Jaeil (Department of Applied Plant Science, Chonnam National University)
  • 조유나 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 김현기 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 조은이 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 오도혁 (경기도농업기술원 소득자원연구소) ;
  • 정회정 (농촌진흥청 국립식량과학원) ;
  • 윤창용 (전남농업기술원 식량작물연구소) ;
  • 안규남 (전남농업기술원 식량작물연구소) ;
  • 조재일 (전남대학교 농업생명과학대학 응용식물학과)
  • Received : 2021.05.26
  • Accepted : 2021.06.25
  • Published : 2021.06.30

Abstract

An agrivoltaic system (AVS) is a system of innovation that comprises productions of photovoltaic power and agricultural crops on the same area. However, the decline in crop yield will be fatally occurred because the pigments of crop absorbs less light energy under AVS. In addtion, the photosynthetic capacity of crop grown under the partial shading of AVS is not well reported. In this study, the electron transport rate (ETR) and non-photochemical fluorescence quenching (NPQ) of soybean and rice under the AVS in Boseong and Naju was investigated using chlorophyll fluorescence measurement. The ETR value of soybean and rice under AVS were not significantly differed by location. It represents that the photophosphorylation rate of the crops is not critically different. It means that the decreases in total photosynthesis under AVS were mostly affected by the amount of light absorbed by leaves. Under AVS the photosynthesis of crops will be lower than field crops grown in open fields. This is because the crops under AVS observed higher NPQ, which means that the available energy cannot distribute to photophosphorylation reaction.

영농형 태양광은 동일 토지면적에서 태양광 패널에 의한 발전과 작물 경작을 융합한 시스템이다. 광 에너지가 부족한 영농형 태양광 하부에서 작물의 수확량이 감소하는 것은 필연적이나, 이를 관장하는 패널 하부에서 생육한 작물의 광합성 반응에 대해서는 국내외적으로 거의 알려진 바가 없다. 본 연구는 고정형 영농형 태양광 시설 하부에서 재배된 작물 잎에 흡수된 광에너지가 광합성 반응 중심에 전달되고 열로 방출되는 효율을 엽록소 형광 관측을 통해 조사하였다. 패널 하부와 노지의 콩과 벼는 ETR에서 큰 차이가 없는 것으로 보아 광인산화 효율보다는 잎이 흡수한 광 에너지에 따라 CO2 고정량이 결정되는 것으로 보인다. 또한, 패널 하부의 콩과 벼는 노지보다 NPQ가 더 높은 것으로 보아 활성화된 광보호기작이 광인산화로의 에너지 분배에 부정적 역할을 할 수 있을 것으로 보인다. 향후 영농형 태양광에서의 작물 생산량과 광합성의 관계를 이해하기 위해 보다 다양한 기후 및 재배조건에서의 광합성 반응을 조사할 필요가 있겠다.

Keywords

Acknowledgement

이 논문은 한전 전력연구원(과제명: 장경간 고도상향 구조의 유틸리티급 농업공존형 태양광 개발)과 공동연구사업 일환으로 수행되었으며, 이에 감사 드립니다.

References

  1. AL-agele, H. A., K. Proctor, G. Murthy, and C. Higgins, 2021: A Case Study of Tomato (Solanum lycopersicon var. Legend) Production and Water Productivity in Agrivoltaic Systems. Sustainability 13(5), 2850. https://doi.org/10.3390/su13052850
  2. An, K., C. Yoon, S. Shin, S. Kim, and J. Cho, 2021: Characteristics of Paddy Rice by Planting Density under Agrophotovoltaic module structure. Proceeding of the Korean Solar Energy Society of Conference, 175pp.
  3. Cho, Y., C. Yoon, H. Kim, H. Moon, K.N. An, and J. Cho, 2020: Meteorological data measured under agrivoltaic systems in Boseong-gun during winter barley season. Korean Journal of Agricultural and Forest Meteorology 22(3), 144-151. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2020.22.3.144
  4. Dupraz, C., H. Marrou, G. Talbot, L. Dufour, A. Nogier, and Y. Ferard, 2011: Combining solar photovoltaic panels and food crops for optimising land use: towards new agrivoltaic schemes. Renewable energy 36(10), 2725-2732. https://doi.org/10.1016/j.renene.2011.03.005
  5. Fu, W., P. Li, and Y. Wu, 2012: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae 135, 45-51. https://doi.org/10.1016/j.scienta.2011.12.004
  6. Gardner, Frank P., R. Brent Pearce, and Roger L. Mitchell, 2017: Physiology of Crop Plants. Scientific publishers, 64pp.
  7. Goetzberger, A., and A. Zastrow, 1982: On the Coexistence of Solar- Energy Conversion and Plant Cultivation. International Journal of Solar Energy 1, 55-69. https://doi.org/10.1080/01425918208909875
  8. Kim, H., S. Jee, J. Kim, M. Kang, S. Yun, M. Kim, J. Kim, Y. Lee, J. Son, G. Song, H. Jeon, and J. Chung, 2020: Rice and electric power production by adjusting the module angle of grid-connected agro-photovoltaic plant. Proceedings of the Korean Society of Crop Science Conference, 91pp.
  9. Krause, G. H., and E. Weis, 1991: Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42, 313-349. https://doi.org/10.1146/annurev.pp.42.060191.001525
  10. Li, X. P., P. Muller-Moule, A. M. Gilmore, and K. K. Niyogi, 2002: PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proceedings of the National Academy of Sciences 99(23), 15222-15227. https://doi.org/10.1073/pnas.232447699
  11. Marrou, H., L. Guilioni, L. Dufour, C. Dupraz, and J. Wery, 2013: Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agriculture and Forest Meteorology 177, 117-132. https://doi.org/10.1016/j.agrformet.2013.04.012
  12. Oxborough, K., and N. R. Baker, 1997: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv'/Fm'; without measuring Fo'. Photosynthesis research 54(2), 135-142. https://doi.org/10.1023/A:1005936823310
  13. Perez-Bueno, M. L., M. P. Johnson, A. Zia, A. V. Ruban, and P. Horton, 2008: The Lhcb protein and xanthophyll composition of the light harvesting antenna controls the ΔpH-dependency of non-photochemical quenching in Arabidopsis thaliana. Federation of European Biochemical Societies letters 582(10), 1477-1482. https://doi.org/10.1016/j.febslet.2008.03.040
  14. Serodio, J., and J. Lavaud, 2011: A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Photosynthesis research 108, 61-76. https://doi.org/10.1007/s11120-011-9654-0
  15. Yoshida, S., 1981: Fundamentals of rice crop science. The international rice research institute, 269pp.
  16. Zhu, X. G., S. P. Long, and D. R. Ort, 2008: What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology 19(2), 153-159. https://doi.org/10.1016/j.copbio.2008.02.004