Browse > Article
http://dx.doi.org/10.5389/KSAE.2022.64.2.001

Simulation of Solar Irradiance Distribution Under Agrivoltaic Facilities  

Jeong, Young-Joon (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University)
Lee, Sang-Ik (Department of Rural Systems Engineering, Seoul National University)
Lee, Jong-Hyuk (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University)
Seo, Byung-Hun (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University)
Kim, Dong-Su (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University)
Lee, Jimin (Research Institute of Agriculture and Life Sciences, Seoul National University)
Choi, Won (Department of Landscape Architecture and Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Global Smart Farm Convergence Major, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.64, no.2, 2022 , pp. 1-13 More about this Journal
Abstract
Agrivoltaic facility is the composite system that the solar panel is installed above the farmland, and it enables crop and electricity production simultaneously. Solar panels of the agrivoltaic facilities can block and reduce the amount of solar irradiance arriving at the farmland, but it can help the crop growth by preventing excessive solar irradiance. Therefore, to clarify how the agrivoltaic facilities affect the crop growth, precise solar irradiance distribution under the solar panel should be modeled. In this study, PAR (photosynthetically active radiation), radiation from 400 to 700 nm, which crops usually use to grow, was extracted from the total irradiance and its distribution model under various conditions was developed. Monthly irradiance distributions varied because the elevation of the sun was changed over time, which made the position changed that the local maximum and minimum irradiance appear. The higher panel height did not cause any significant difference in the amount of irradiance reaching below the solar panel, but its distribution became more uniform. Furthermore, the panel angles with the most irradiance arriving below the solar panel were different by month, but its difference was up to 2%p between the irradiance with 30° angle which is usually recommended in Korea. Finally, the interval between panels was adjusted; when the ratio of the length of the panel to the empty space was 1:2, the irradiance of 0.719 times was reached compared to when there was no panel, 0.579 times for 1:1 and 0.442 times for 2:1.
Keywords
Agrivoltaic facility; solar irradiance; photosynthetically active radiation; simulation model; irradiance distribution;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Dupraz, C., H. Marrou, G. Talbot, L. Dufour, A. Nogier, and Y. Ferard, 2011. Combining solar photovoltaic panels and food crops for optimising land use: towards new agrivoltaic schemes. Renewable Energy 36(10): 2725-2732. doi:10.1016/j.renene.2011.03.005.   DOI
2 Son, J. K., K. O. Song, H. I. Jeon, S. Y. Cho, J. S. Yeo, D. K. Lee, C. G. Kim, S. H. Park, 2017. Simulation and analysis of solar radiation by module arrangement type for fanning solar generation system. Proceedings of The Korean Society of Mechanical Engineers (in Korean).
3 Ge, S., R. G. Smith, C. P. Jacovides, M. G. Kramer, and R. I. Carruthers, 2011. Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California. Theoretical and Applied Climatology 105(1-2): 107-118. doi:10.1007/s00704-010-0368-6.   DOI
4 Erbs, D. G. S. A. Klein, and J. A. Duffie, 1982. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy 28(4): 293-302. doi:10.1016/0038-092X(82)90302-4.   DOI
5 Cossu, M. L. Murgia, L. Ledda, P. A. Deligios, A. Sirigu, F. Chessa, and A. Pazzona, 2014. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and eects on crop productivity. Applied Energy 133: 89-100. doi:10.1016/j.apenergy.2014.07.070.   DOI
6 Kim, J., S. June, and J. Lee, Environmental assessment in the siting of solar and wind power plants. 2011. Journal of Korean Society of Environmental Technology 12(2): 141-147 (in Korean).
7 Dinesh, H., and J. M. Pearce, 2016. The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews 54: 299-308. doi:10.1016/j.rser.2015.10.024.   DOI
8 Hunt, L. A., L. Kuchar, and C. J. Swanton, 1998. Estimation of solar radiation for use in crop modelling. Agricultural and Forest Meteorology 91(3-4): 293-300. doi:doi.org/10.1016/S0168-1923(98)00055-0.   DOI
9 Goudriaan, J., 1988. The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange. Agricultural and forest meteorology 43(2): 155-169. doi:10.1016/0168-1923(88)90089-5.   DOI
10 Grant, R. H., G, M. Heisler, and W. Gao, 1996. Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions. Agricultural and Forest Meteorology 82(1-4): 267-292. doi:doi.org/10.1016/0168-1923(95)02327-5.   DOI
11 Igawa, N., Y. Koga, T. Matsuzawa, and H. Nakamura, 2004. Models of sky radiance distribution and sky luminance distribution. Solar Energy 77(2): 137-157. doi:10.1016/j.solener.2004.04.016.   DOI
12 Jeong, J. H., 2020. The present situation and prospect of agrivoltaic system. Bulletin of the Korea Photovoltaic Society 6(2): 25-33 (in Korean).
13 Lee, S. I., J. Y. Choi, S. J. Seong, S. J. Lee, J. M. Lee, and W. Choi, 2020. Simulation and analysis of solar radiation change resulted from solar-sharing for agricultural solar photovoltaic system. Journal of the Korean Society of Agricultural Engineers 62(5): 63-72. doi:/10.5389/KSAE.2020.62.5.063 (in Korean).   DOI
14 Kim, G. H., 2020. A study on the development of Korean agrivoltaic system and the analysis of the lower crops growth characteristics. Bulletin of the Korea Photovoltaic Society 6(2):15-24 (in Korean).
15 Kim, D. S., C. H. Kim, J. S. Park, C. H. Kim, J. W. Nam, J. Y. Cho, and C. H. Lim. 2020. Computer simulation of lower farmland by the composition of an agrophotovoltaic system. The Korean Society for New and Renewable Energy 16(1): 41-46. doi:10.7849/ksnre.2020.2052 (in Korean).   DOI
16 Marrou, H., L. Guilioni, L. Dufour, C. Dupraz, and J. Wery, 2013. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels?. Agricultural and Forest Meteorology 177: 117-132. doi:10.1016/j.agrformet.2013.04.012.   DOI
17 Korean Meteorological Agency, 2020. Abnormal climate report 2019, 10-55. 11-1360000-000705-01.
18 Lee, S. I., J. J. Lee, J. Y. Choi, W. Choi, and S. J. Seong, 2019. Agricultural solar photovoltaic power generation to share solar energy, solar-sharing. Magazine of the Korean Society of Agricultural Engineers 61(4): 2-11 (in Korean).
19 Cho, J., S. M. Park, A. R. Park, O. C. Lee, G. Nam, and I. H. Ra, 2020. Application of photovoltaic systems for agriculture: a study on the relationship between power generation and farming for the improvement of photovoltaic applications in agriculture. Energies 13(18): 4815. doi:10.3390/en13184815.   DOI
20 Artru, S., B. Dumont, F. Ruget, M. Launay, D. Ripoche, L. Lassois, and S. Garre, 2018. How does STICS crop model simulate crop growth and productivity under shade conditions? Field Crops Research 215: 83-93. doi:10.1016/j.fcr.2017.10.005.   DOI
21 Goetzberger, A., and A, Zastrow, 1982. On the coexistence of solar-energy conversion and plant cultivation. International Journal of Solar Energy 1(1): 55-69.doi:10.1080/01425918208909875.   DOI
22 Gu, L., J. D. Fuentes, H. H. Shugart, R. M. Staebler, and T. A. Black, 1999. Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North American deciduous forests. Journal of Geophysical Research: Atmospheres 104(D24): 31421-31434. doi:10.1029/1999jd901068.   DOI
23 Jacovides, C. P., F. S. Tymvios, V. D. Assimakopoulos, and N. A. Kaltsounides, 2007. The dependence of global and diffuse PAR radiation components on sky conditions at Athens, Greece. Agricultural and Forest Meteorology 143(3-4): 277-287. doi:10.1016/j.agrformet.2007.01.004.   DOI
24 Lee, C. K., D. S. Kim, Y. U. Kwon, J . E. Lee, J. H. Seo, and B. W. Lee, 2009. The effect of temperature and radiation on grain weight and grain nitrogen content in rice, Korean journal of crop sciences 54(1): 36-44 (in Korean).
25 Oliphant, A. J., and P. C. Stoy, 2018. An evaluation of semiempirical models for partitioning photosynthetically active radiation into diffuse and direct beam components. Journal of Geophysical Research: Biogeosciences 123(3): 889-901. doi:10.1002/2017JG004370.   DOI
26 Majumdar, D., and M. J. Pasqualetti, 2018. Dual use of agricultural land: Introducing 'agrivoltaics' in Phoenix Metropolitan Statistical Area, USA. Landscape and urban planning 170: 150-168. doi:10.1016/j.landurbplan.2017.10.011.   DOI
27 Cho, Y., S. Baek, W. Choi, and D. Jeong, 2018. A development of VPP Platform for the efficient utilization of distributed renewable energy resources. The Journal of Information Systems 27(2): 95-114. doi:10.5859/KAIS.2018.27.2.95 (in Korean).   DOI
28 Mizoguchi, Y., Y. Yasuda, Y. Ohtani, T. Watanabe, Y. Kominami, and K. Yamanoi, 2014. A practical model to estimate photosynthetically active radiation using general meteorological elements in a temperate humid area and comparison among models. Theoretical and Applied Climatology 115(3-4): 583-589. doi:10.1007/s00704-013-0912-2.   DOI
29 Sekiyama, T., and A. Nagashima, 2019. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 6(6): 65. doi:10.3390/environments6060065.   DOI
30 Zhen, S., and B. Bugbee, 2020. Far red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant, Cell & Environment: 43(5): 1259-1272 doi:10.1111/pce.13730.   DOI
31 Wang, Q., J. Tenhunen, M. Schmidt, D. Otieno, O. Kolcun, and M. Droesler, 2005. Diffuse PAR irradiance under clear skies in complex alpine terrain. Agricultural and Forest Meteorology 128(1-2): 1-15. doi:10.1016/j.agrformet.2004.09.004.   DOI
32 Reindl, D. T., W. A. Beckman, and J. A. Duffie, 1990. Diffuse fraction correlations. Solar energy 45(1): 1-7. doi:10.1016/0038-092X(90)90060-P.   DOI
33 Ministry of Trade, Industry and Energy, Renewable energy 3020 implementation plan, https://www.motie.go.kr/motie/py/brf/motiebriefing/motiebriefing404.do?brf_code_v=404#header. Accessed 20 Dec. 2021.
34 Mun, B. H., and B. Y. Lee, 2002. Growth model of leaf lettuce based on the cumulative photosynthetic photon flux density. Proceedings of the Korean Society for Bio-Environment Control Conference 85-92 (in Korean).
35 Myneni, R. B., 1991. Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies. Agricultural and Forest Meteorology 55(3-4): 323-344. doi:10.1016/0168-1923(91)90069-3.   DOI
36 Ross, J., 2012. The radiation regime and architecture of plant stands (Vol. 3). Berlin: Springer Science & Business Media.
37 Spitters, C. J. T., H. A. J. M. Toussaint, and Goudriaan, J., 1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation. Agricultural and Forest Meteorology 38(1-3): 217-229. doi:10.1016/0168-1923(86)90060-2.   DOI
38 Yang, Y., W. Xu, P. Hou, G. Liu, W. Liu, Y. Wang, and S. Li, 2019. Improving maize grain yield by matching maize growth and solar radiation. Scientific Reports 9(1): 1-11. doi:/10.1038/s41598-019-40081-z.   DOI
39 Yoon, C, S. Choi, K. N. An, J. H. Ryu, H, Jeong, and J. Cho, 2019. Preliminary experiment of the change of insolation under solar panel mimic shading net, Korean Journal of Agricultural and Forest Meteorology 21(4): 358-365. doi: 10.5532/KJAFM.2019.21.4.358 (in Korean).   DOI