DOI QR코드

DOI QR Code

Comparison between Solar Radiation Estimates Based on GK-2A and Himawari 8 Satellite and Observed Solar Radiation at Synoptic Weather Stations

천리안 2A호와 히마와리 8호 기반 일사량 추정값과 종관기상관측망 일사량 관측값 간의 비교

  • Dae Gyoon Kang (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Young Sang Joh (Department of Plant Science, Seoul National University) ;
  • Shinwoo Hyun (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Kwang Soo Kim (Department of Plant Science, Seoul National University)
  • 강대균 (서울대학교 협동과정 농림기상학) ;
  • 조영상 (서울대학교 식물생산과학부) ;
  • 현신우 (서울대학교 농림생물자원학부) ;
  • 김광수 (서울대학교 식물생산과학부)
  • Received : 2023.02.07
  • Accepted : 2023.03.28
  • Published : 2023.03.30

Abstract

Solar radiation that is measured at relatively small number of weather stations is one of key inputs to crop models for estimation of crop productivity. Solar radiation products derived from GK-2A and Himawari 8 satellite data have become available, which would allow for preparation of input data to crop models, especially for assessment of crop productivity under an agrivoltaic system where crop and power can be produced at the same time. The objective of this study was to compare the degree of agreement between the solar radiation products obtained from those satellite data. The sub hourly products for solar radiation were collected to prepare their daily summary for the period from May to October in 2020 during which both satellite products for solar radiation were available. Root mean square error (RMSE) and its normalized error (NRMSE) were determined for daily sum of solar radiation. The cumulative values of solar radiation for the study period were also compared to represent the impact of the errors for those products on crop growth simulations. It was found that the data product from the Himawari 8 satellite tended to have smaller values of RMSE and NRMSE than that from the GK-2A satellite. The Himawari 8 satellite product had smaller errors at a large number of weather stations when the cumulative solar radiation was compared with the measurements. This suggests that the use of Himawari 8 satellite products would cause less uncertainty than that of GK2-A products for estimation of crop yield. This merits further studies to apply the Himawari 8 satellites to estimation of solar power generation as well as crop yield under an agrivoltaic system.

일사량은 작물 생산성 평가를 위한 작물 생육 모델의 주요 입력 변수 중 하나로 사용되지만 관측이 어려워 다른 기상 변수들에 비해 관측값의 확보가 어렵다. 천리안 2A호와 히마와리 8호 위성 일사량 자료가 제공되기 시작하면서, 작물 생육과 태양광 발전을 결합한 영농형 태양광 시설 하에서의 작물 생산성 평가를 위한 일사량 자료를 확보하기 용이해졌다. 본 연구의 목적은 이들 인공위성 일사량 자료의 신뢰도를 비교하는 것이다. 이를 위해 2020년 5월부터 10월까지 인공위성 일사량 자료를 수집하여 일별 일사량의 평균 제곱근 편차(RMSE)와 정규 평균 제곱근 편차(NRMSE)를 계산하였다. 인공위성 일사량 자료가 작물 생육 모의 결과의 신뢰도에 미치는 영향을 파악하기 위해 연구기간 동안의 일사량 누적값을 비교하였다. 본 연구의 결과 히마와리 8호 일사량 자료가 천리안 2A호 일사량 자료보다 RMSE와 NRMSE가 작은 것으로 나타났다. 누적 일사량을 비교한 결과에서도 히마와리 8호 일사량 자료 누적값이 천리안 2A호 일사량 자료 누적값보다 오차가 작았다. 본 연구의 결과는 작물 생산성 평가에 히마와리 8호 일사량 자료를 사용하는 것이 천리안 2A호 일사량 자료를 사용하는 것보다 불확도를 줄일 수 있다는 것을 시사한다. 후속 연구에서 히마와리 8호 일사량 자료를 사용한 영농형 태양광 시설 하에서의 작물 생산성 및 태양광 발전량에 대한 분석이 이루어져야 할 것이다.

Keywords

Acknowledgement

본 연구는 농림축산식품부의 재원으로 농림식품기술기획평가원의 농업에너지자립형 산업모델기술개발사업의 지원을 받았습니다(321075-02-1-SB 010).

References

  1. Antonopoulos, V. Z., D. M. Papamichail, V. G. Aschonitis, and A. V. Antonopoulos, 2019: Solar radiation estimation methods using ANN and empirical models. Computers and Electronics in Agriculture 160, 160-167. https://doi.org/10.1016/j.compag.2019.03.022
  2. Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, T. Miyakawa, H. Murata, T. Ohno, A. Okuyama, R. Oyama, Y. Sasaki, Y. Shimazu, K. Shinji, Y. Sumida, M. Suzuki, H. Taniguchi, H. Tsuchiyama, D. Uesawa, H. Yokota, and R. Yoshida, 2016: An introduction to Himawari-8/9-Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II 94(2), 151-183. https://doi.org/10.2151/jmsj.2016-009
  3. Bojanowski, J. S., A. Vrieling, and A. K. Skidmore, 2014: A comparison of data sources for creating a long-term time series of daily gridded solar radiation for Europe. Solar Energy 99, 152-171. https://doi.org/10.1016/j.solener.2013.11.007
  4. Chen, J.-L., L. He, H. Yang, M. Ma, Q. Chen, S.-J. Wu, and Z.-l. Xiao, 2019: Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China. Renewable and Sustainable Energy Reviews 108, 91-111. https://doi.org/10.1016/j.rser.2019.03.033
  5. Cho, Y. H., S. J. Cho, H. S. Kwon, and D. H. Yoo, 2019: Building an Agrophotovoltaic System and Suggesting Activation Plans. The Journal of Information Systems 28(1), 115-132.
  6. Choi, M.-H., J.-I. Yun, U.-R. Chung, and K.-H. Moon, 2010: Performance of Angstrom-Prescott coefficients under different time scales in estimating daily solar radiation in South Korea. Korean Journal of Agricultural and Forest Meteorology 12(4), 232-237. https://doi.org/10.5532/KJAFM.2010.12.4.232
  7. Choi, Y. Y., and M. S. Suh, 2020: Development of a land surface temperature retrieval algorithm from GK2A/AMI. Remote Sensing 12(18), 3050.
  8. Damiani, A., H. Irie, T. Horio, T. Takamura, P. Khatri, H. Takenaka, T. Nagao, T. Y. Nakajima, and R. R. Cordero, 2018: Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements. Atmospheric Measurement Techniques 11(4), 2501-2521. https://doi.org/10.5194/amt-11-2501-2018
  9. Hyun, S., and K. S. Kim, 2016: Assessment of the Angstrom-Prescott Coefficients for Estimation of Solar Radiation in Korea. Korean Journal of Agricultural and Forest Meteorology 18(4), 221-232. https://doi.org/10.5532/KJAFM.2016.18.4.221
  10. Jeong, D. I., A. St-Hilaire, Y. Gratton, C. Belanger, and C. Saad, 2017: A guideline to select an estimation model of daily global solar radiation between geostatistical interpolation and stochastic simulation approaches. Renewable energy 103, 70-80. https://doi.org/10.1016/j.renene.2016.11.022
  11. Jiang, H., N. Lu, J. Qin, W. Tang, and L. Yao, 2019: A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data. Renewable and Sustainable Energy Reviews 114, 109327.
  12. Joh, Y. S., J. Jung, S. Hyun, and K. S. Kim, 2022: Assessment of region specific Angstrom-Prescott coefficients on uncertainties of crop yield estimates using CERES-Rice model. Korean Journal of Agricultural and Forest Meteorology 24(4), 256-266.
  13. Kang, D., S. Hyun, and K. S. Kim, 2019: Development of a deep neural network model to estimate solar radiation using temperature and precipitation. Korean Journal of Agricultural and Forest Meteorology 21(2), 85-96.
  14. Kaskaoutis, D., and J. Polo, 2019: Editorial for the Special Issue "Solar Radiation, Modeling, and Remote Sensing". Remote Sensing 11(10), 1198.
  15. Kim, D. J., S. O. Kim, J. H. Kim, and E. J. Yun, 2019: Establishment of geospatial schemes based on topo-climatology for farm-specific agrometeorological information. Korean Journal of Agricultural and Forest Meteorology 21(3), 146-157.
  16. Kleinbaum, D. G., L. L. Kupper, A. Nizam, and E. S. Rosenberg, 2013: Applied regression analysis and other multivariable methods. Cengage Learning.
  17. Koo, Y., S. M. Kim, M. Oh, and H. D. Park, 2019: Estimation of solar irradiance at weather stations in Korea using regionally trained artificial neural network models. Journal of the Korean Society of Mineral and Energy Resources Engineers 56(2), 155-171. https://doi.org/10.32390/ksmer.2019.56.2.155
  18. Letu, H., K. Yang, T. Y. Nakajima, H. Ishimoto, T. M. Nagao, J. Riedi, A. J. Baran, R. Ma, T. Wang, H. Shang, P. Khatri, L. Chen, C. Shi, and J. Shi, 2020: High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sensing of Environment 239, 111583.
  19. Meenal, R., and A. I. Selvakumar, 2018: Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renewable Energy 121, 324-343. https://doi.org/10.1016/j.renene.2017.12.005
  20. Mohammadi, K., S. Shamshirband, D. Petkovic, and H. Khorasanizadeh, 2016: Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran. Renewable and Sustainable Energy Reviews 53, 1570-1579. https://doi.org/10.1016/j.rser.2015.09.028
  21. Mokhtari, A., H. Noory, and M. Vazifedoust, 2018a: Improving crop yield estimation by assimilating LAI and inputting satellite-based surface incoming solar radiation into SWAP model. Agricultural and forest meteorology 250, 159-170. https://doi.org/10.1016/j.agrformet.2017.12.250
  22. Mokhtari, A., H. Noory, and M. Vazifedoust, 2018b: Performance of Different Surface Incoming Solar Radiation Models and Their Impacts on Reference Evapotranspiration. Water resources management 32(9), 3053-3070. https://doi.org/10.1007/s11269-018-1974-9
  23. Olatomiwa, L., S. Mekhilef, S. Shamshirband, K. Mohammadi, D. Petkovic, and C. Sudheer, 2015: A support vector machine-firefly algorithm-based model for global solar radiation prediction. Solar Energy 115, 632-644. https://doi.org/10.1016/j.solener.2015.03.015
  24. Peng, Z., H. Letu, T. Wang, C. Shi, C. Zhao, G. Tana, N. Zhao, T. Dai, R. Tang, H. Shang, S. Jiancheng and L. Chen, 2020: Estimation of shortwave solar radiation using the artificial neural network from Himawari-8 satellite imagery over China. Journal of Quantitative Spectroscopy and Radiative Transfer 240, 106672.
  25. Seo, J. H., J. D. Hwang, H. G. Bae, S. Y. Kim, and J. M. Go, 2018: 남부지역 논에서 봄감자-하 계식량작물 이모작의 생육기.수량 변화. In Proceedings of the Korean Society of Crop Science Conference, The Korean Society of Crop Science, 68pp.
  26. Wang, L., O. Kisi, M. Zounemat-Kermani, Z. Zhu, W. Gong, Z. Niu, H. Liu, and Z. Liu, 2017: Prediction of solar radiation in China using different adaptive neuro-fuzzy methods and M5 model tree. International Journal of Climatology 37(3), 1141-1155. https://doi.org/10.1002/joc.4762
  27. White, J. W., G. Hoogenboom, P. W. Wilkens, P. W. Stackhouse Jr, and J. M. Hoel, 2011: Evaluation of satellite-based, modeled-derived daily solar radiation data for the continental United States. Agronomy journal 103(4), 1242-1251. https://doi.org/10.2134/agronj2011.0038
  28. Yun, E. J., D. J. Kim, J. H. Kim, D. G. Kang, S. O. Kim, and Y. Kim, 2021: Relationship between Solar Radiation in Complex Terrains and Shaded Relief Images. Korean Journal of Agricultural and Forest Meteorology 23(4), 283-294.