• Title/Summary/Keyword: Agrimonia pilosa

Search Result 68, Processing Time 0.029 seconds

Prediction of Optimal Microwave Extraction Conditions for Functional Compounds from Agrimonia pilosa Ledeb Using Response Surface Methodology (반응표면분석법을 이용한 용아초 기능성 성분의 마이크로웨이브 최적 추출조건 예측)

  • Park, Jong Jin;Lee, Won Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.263-270
    • /
    • 2016
  • Background: In this study, microwave extraction was used, which is an effective method to extract useful bioactive substances as it requires low quantities of solvent and short time periods. The aim of this study was to determine the optimal extraction conditions for Agrimonia pilosa Ledeb. Methods and Results: The independent variables were ethanol concentration, microwave power, and extraction time, each of which had five levels. The dependent variables were total polyphenol and total flavonoid content, and DPPH radical scavenging activity. To determine the optimal extraction conditions for bioactive compounds, a response surface methodology was employed. Contour maps were generated from polynomial equations. The optimal conditions were then assumed by superimposing these contour maps. Based on the resulting graph, the optimal microwave extraction conditions for Agrimonia pilosa Ledeb were determined as 42 - 48% ethanol concentration, 240 - 280W microwave power, and 13 - 20 min of extraction time. Conclusions: Ethanol concentration had a significant effect on microwave extraction, in terms of total polyphenol and total flavonoid content, as well as DPPH radical scavenging activity. Microwave power and extraction time influenced the total polyphenol content, but not the total flavonoid content or the DPPH radical scavenging activity.

Antiinflammatory and antioxidative effects of Agrimonia pilosa Ledeb

  • Sim, SY;Kim, GJ;Ko, SG
    • Advances in Traditional Medicine
    • /
    • v.7 no.3
    • /
    • pp.217-228
    • /
    • 2007
  • Agrimonia pilosa Ledeb. has long been used for a useful natural agent ameliorating inflammation related symptoms in the folk medicine recipe. This study was performed to investigate effects of Agrimonia pilosa Ledeb.(AP) on the expression of inflammation related genes such as the inducible nitric oxide synthase (iNOS) in macrophage cell line, RAW 264.7 cells. The AP (whole plants) was extracted with 80% ethanol and sequentially partitioned with solvents in order to increase polarity. Among the various solvent extracts of AP, the n-butanol (BuOH) fraction showed the most powerful inhibitory ability against nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells without affecting cell viability. Reverse transcriptase-polymerase chain reaction and Western blot analysis revealed that the BuOH fraction provided a primary inhibitor of the iNOS protein and mRNA expression in LPS-induced RAW 264.7 cells. The DPPH and OH radical scavenging activities of the several fractions of 80% ethanol extracts of AP significantly increased by EtOAC and BuOH fractions. Thus, the present study suggests that the response of a component of the BuOH fraction to NO generation via iNOS expression provide an important clue to elucidate anti-inflammatory mechanism of AP.

Study of Inhibitory Effect of Melanogenesis and Antioxidant Activity of Agrimonia pilosa Ledeb (선학초 추출물의 멜라닌합성 억제 및 항산화효과)

  • Kim, Dae-Sung;Kim, Yeong-Mok;Woo, Won-Hong;Mun, Yeun-Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.236-241
    • /
    • 2010
  • The purpose of this study was to investigate the mechanism of ethanol extract of Agrimonia pilosa Ledeb. (EAP)-reduced melanogenesis and diphenyl-picryl-hydrazyl (DPPH) radical scavenging activity. Agrimonia pilosa Ledeb., a perennial herbaceous plant, has been used as an antihemorrhagic, anthelminntic, and antiinflammatory agents in Chinese herbal medicine. In the present study, we observed that melanin synthesis and tyrosinase activity of B16F10 cells were significantly decreased by EAP. However, EAP could not suppress tyrosinase activity in the cell-free system, whereas kojic acid directly inhibited tyrosinase activity. Furthermore, EAP decreased the protein expression of tyrosinase, tyrosinase-related prootein 1 (TRP-1), and tyrosinase-related prootein 2 (TRP-2). EAP scavenged DPPH radical up to 41% with 100 ${\mu}g/m{\ell}$ concentration. These results suggest that the hypopigmentary effect of EPA was due to regulation of tyrosinase protein.

Study on Antioxidant Activity of Smallanthus sonchifolius, Agrimonia pilosa, and Lithospermum erythrorhizon Extract Fractions (야콘, 선학초, 자초 추출물 분획의 항산화 활성에 관한 연구)

  • Kim, A-Ram;Jeong, Gwi-Taek
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.302-306
    • /
    • 2015
  • In this work, the antioxidant activity and total phenolic compound content of 6 fractions of Smallanthus sonchifolius, Agrimonia pilosa, and Lithospermum erythrorhizon extract were investigated. The highest total phenolic compound contents of each plant extracts were obtained from n-butanol ($13.75{\pm}0.21%$) and methylene chloride ($12.89{\pm}1.10%$) fractions (S. sonchifolius), ethyl acetate ($19.69{\pm}1.02%$) and water ($18.72{\pm}0.76%$) fractions (A. pilosa), and n-butanol ($36.26{\pm}1.26%$) and ethyl acetate ($17.66{\pm}0.94%$) fractions (L. erythrorhizon), respectively. As a result of DPPH radical scavenging activity in 10 mg/mL condition, the highest activity were obtained from n-butanol fraction of S. sonchifolius (81.06%), ethyl acetate fraction of A. pilosa (86.32%), and n-butanol fraction of L. erythrorhizon (82.6%), respectively. Also, the highest reducing power was obtained same fractions as well as DPPH adical scavenging activity. Overall, antioxidant activity has relatively closely connected with contents of total phenolic compounds in S. sonchifolius and L. erythrorhizon extracts.

The Inhibitory Effect of Agrimonia pilosa Ledeb Extract on Allergic Reaction (짚신나물 추출물의 알레르기 반응 억제 효과)

  • Kim, Young-Mi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.6
    • /
    • pp.398-404
    • /
    • 2010
  • Complementary and alternative medicines are considered as a promising research field to develop new therapies for various allergic diseases. In this study, we investigated the anti-allergic effect of Agrimonia pilosa Ledeb (AP) by using passive cutaneous anaphylaxis in mice and its mechanism of action in mast cells. The extract of AP reversibly inhibited degranulation in RBL-2H3 cells and bone marrow-derived mast cells (BMMCs). AP also suppressed the passive cutaneous anaphylaxis inducing by IgE and antigen (Ag) in a dose-dependent manner. In the study to find its mechanism of action, AP inhibited the phosphorylation of Syk kinase, a pivotal protein which is regulated by Src-family kinase for activation of mast cells. In addition, AP also suppressed activation of Akt and Erk1/2 that are critical for the production of cytokines in mast cells. The results strongly suggest that AP exerts anti-allergic activity in vitro and in vivo through the inhibition of activation of Syk in mast cells.

Mechanism of Apoptosis & Tumor Growth Inhibition of Agrimonia pilosa Ledebour(APL) in vitro and in vivo (선학초(짚신나물)에 의한 in vitro와 in vivo에서의 암세포사멸 기전 탐색)

  • Choi, Soon-Ja;Baik, Jong-Woo;Park, Jong-Hyeong;Jun, Chan-Yong;Choi, You-Kyung;Ko, Seung-Gyu
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.399-409
    • /
    • 2009
  • Objectives : The aim of this study was to experiment the antitumor activity of Agrimonia pilosa Ledebour (APL) in human stomach cancer (AGS) cell lines (in vitro) and male C57BL/6J mouse (in vivo). Methods : The effects of the ethanol extract from the plant on several transplantable rodent tumors were investigated in vitro by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. DNA content analysis and Western blot analysis. Agrimonia pilosa Ledebour (APL) was given to rats with Lewis Lung Carcinoma (LLC) cells. The experimental rats were divided into 3 groups in vivo. Saline was injected into the abdominal cavity in the first group, 50 mg/kg APL was injected into the abdominal cavity in the second group and 100 mg/kg was injected into the abdominal cavity in the third group. After that, we checked their tumor volume periodically. Results : At first, human gastric cancer (AGS) cell lines (in vitro) showed decreased cell viability, and increased $sub-G_1$ contents. When we experimented rat intestinal epithelial (RIE)l as same condition, this result didn't show. With this, compared to normal cells, Agrimonia pilosa Ledebour (APL) led selectively to the extinction of cells only in human gastric cancer. Moreover, we showed that the traditional herbal medicine APL induced caspase-dependent apoptosis in AGS cells. Next, APL inhibited the growth of LLC-bearing mouse tumor. However, we could not verify APL induced caspase-dependent apoptosis in LLC-bearing mouse tumor. Conclusions : The roots of Agrimonia pilosa Ledebour (APL) contain some antitumor constituents.

  • PDF

Whitening Activities of the Agrimonia pilosa L. Extracts (선학초 추출물의 미백활성)

  • Kim, Dong-Hee;An, Bong-Jeun;Lee, Jin-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.284-289
    • /
    • 2011
  • The extracts of Agrimonia pilosa L. were investigated for the inhibitory effect on the melanin synthesis in B16/F10 mouse melanoma cells as a functional ingredient for cosmetic products. Tyrosinase inhibition activities were 42% in A. pilosa L. 70% ethanol extract at $500{\mu}g/mL$. The protein and mRNA expression of tyrosinase, which are all skin-whitening related factors, showed that A. pilosa L. water and A. pilosa L. 70% ethanol extracts inhibited the protein bio-synthesis in B16F10 melanoma cell. Results indicate that the A. pilosa L. extracts tested in the present study have skin whitening activity and can be used as a functional ingredient for cosmetic compositions.

Studies on the Anti-acne Effect of Agrimonia pilosa Ledeb. (선학초 추출물의 항여드름균 효능 연구)

  • Yoon, Chang-Soon;Kim, Hyun-Ju;Lim, Hye-Won;Kim, Bo-Hyeon;Kim, Hack-Soo;Choi, Shin-Wook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.53-58
    • /
    • 2006
  • Agrimonia pilosa Ledeb. is a perennial plant, which naturally habitats in whole area of Korea, and where it is popularly used for the traditional remedies. In the present study, A. pilosa Ledeb. extract was prepared to determine the anti-acne effects and application possibility as a cosmetic resource. A pilosa Ledeb. was extracted with methanol and its anti-acne effect against Propionibacterium acnes was investigated via minimum inhibitory concentration (MIC) and paper disk diffusion method. The MIC of A. pilosa Ledeb. extract and triclosan was 0.05 mg/mL and 0.04 mg/mL, respectively. This implies that A. pilosa Ledeb. extract nay be an efficient anti-acne ingredient for cosmetics, considering that it is a crude extract. The paper disk diffusion assay showed that its anti-acne effect was similar to that of triclosan. Furthermore, A. pilosa Ledeb. extract effectively inhibited the growth of several aerobic microorganisms including Staphylococcus aureus. Finally, we examine the stability of the extract to temperature and pH. The extract was very stable to high temperatures ($70{\sim}121^{\circ}C$) and to pH ($pH 2{\sim}11$), suggesting its utilization for cosmetics.

Genome Wide Expression Profile of Agrimonia pilosa in LPS-stimulated BV-2 Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Sung-Hoon;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Microglial cells constitute the first line of defense against infection and injury in the brain. This study was conducted to evaluate the protective mechanisms of Agrimonia pilosa (AP) on LPS-induced activation of BV-2 microglial cells. The effects of AP on gene expression profiles in activated BV-2 microglial cells were evaluated using microarray analysis. BV-2 microglial cells were cultured in a 100 mm dish ($1{\times}10^7/mL$) for 24 hr and then pretreated with 1 g/mL AP or left untreated for 30 min. Next, 1 g/mL LPS was added to the samples and the cells were reincubated at $37^{\circ}C$ for 30 min, 3 hr and 6 hr. The gene expression profiles of the BV-2 microglial cells varied depending on the AP. The microarray analysis revealed that MAPK signaling pathway-related genes were down-regulated and IL10 gene was up-regulated in AP-treated BV-2 microglial cells. AP can affect the inflammatory response and MAPK pathway in BV-2 microglial cells.

Chemical Constituents from Agrimonia pilosa with Inhibitory Activity against Interleukin 1β Production via NLRP3 and NLRC4 Inflammasomes

  • Nhoek, Piseth;Chae, Hee-Sung;An, Chae-Yeong;Pel, Pisey;Kim, Young-Mi;Chin, Young-Won
    • Natural Product Sciences
    • /
    • v.27 no.4
    • /
    • pp.228-233
    • /
    • 2021
  • Bioactivity-guided fractionation by preliminary screening using interleukin-1β production in lipopolysaccharides (LPS)-induced J774A.1 cell line led to the isolation of fourteen structures including chromone, isocoumarins, flavanoids, and triterpenes from the aerial part of Agrimonia pilosa Ledeb. All structures were determined by measuring their spectroscopic data and comparing their spectroscopic data with the literatures. All the isolates were tested for their inhibitory activities against interleukin-1β production in LPS-induced J774A.1 cell. Of the tested compounds, (S)-(+)-5,7-dihydroxy-2-(1-methylpropyl)chromone (1), agrimonolide-6-O-β-D-glucopyranoside (5), agrimonolide-6-O-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (6), and catechin (10) were found to be active. Furthermore, compound 1 suppressed the protein expressions of NLRP3 and NLRC4 in murine macrophage.