Mechanism of Apoptosis & Tumor Growth Inhibition of Agrimonia pilosa Ledebour(APL) in vitro and in vivo

선학초(짚신나물)에 의한 in vitro와 in vivo에서의 암세포사멸 기전 탐색

  • Choi, Soon-Ja (Dept. of Internal Medicine, College of Orinental Medicine, Kyung-won University) ;
  • Baik, Jong-Woo (Dept. of Internal Medicine, College of Orinental Medicine, Kyung-won University) ;
  • Park, Jong-Hyeong (Dept. of Internal Medicine, College of Orinental Medicine, Kyung-won University) ;
  • Jun, Chan-Yong (Dept. of Internal Medicine, College of Orinental Medicine, Kyung-won University) ;
  • Choi, You-Kyung (Dept. of Internal Medicine, College of Orinental Medicine, Kyung-won University) ;
  • Ko, Seung-Gyu (Dept. of Preventive Medicine, College of Oriental medicine, Kyung-hee University)
  • Published : 2009.06.30

Abstract

Objectives : The aim of this study was to experiment the antitumor activity of Agrimonia pilosa Ledebour (APL) in human stomach cancer (AGS) cell lines (in vitro) and male C57BL/6J mouse (in vivo). Methods : The effects of the ethanol extract from the plant on several transplantable rodent tumors were investigated in vitro by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. DNA content analysis and Western blot analysis. Agrimonia pilosa Ledebour (APL) was given to rats with Lewis Lung Carcinoma (LLC) cells. The experimental rats were divided into 3 groups in vivo. Saline was injected into the abdominal cavity in the first group, 50 mg/kg APL was injected into the abdominal cavity in the second group and 100 mg/kg was injected into the abdominal cavity in the third group. After that, we checked their tumor volume periodically. Results : At first, human gastric cancer (AGS) cell lines (in vitro) showed decreased cell viability, and increased $sub-G_1$ contents. When we experimented rat intestinal epithelial (RIE)l as same condition, this result didn't show. With this, compared to normal cells, Agrimonia pilosa Ledebour (APL) led selectively to the extinction of cells only in human gastric cancer. Moreover, we showed that the traditional herbal medicine APL induced caspase-dependent apoptosis in AGS cells. Next, APL inhibited the growth of LLC-bearing mouse tumor. However, we could not verify APL induced caspase-dependent apoptosis in LLC-bearing mouse tumor. Conclusions : The roots of Agrimonia pilosa Ledebour (APL) contain some antitumor constituents.

Keywords

References

  1. 전기택. 2005년 남녀사망자와 사망원인. 젠더리뷰. 2006;3:85-90.
  2. 배종면. 상대생존율. 예방의학회지. 2004;37(3): 217-9.
  3. 이상인, 안덕균, 신민교, 노승현, 이영종, 김선희. 한약임상응용. 서울: 성보사;1986, p. 248-9.
  4. 전성봉, 양바롬, 최춘환, 김익수, 박경석. 식물병원균에 대한 짚신나물(선학초)추출물의 항균활성과 Agrimol B의 동정. 농약과학회지. 2006; 10(3):230-6.
  5. 박신, 권오진. Escherichia coli O157:H7의 제어를 위한 선학초 추출물과 NaCl의 병용효과. 한국생물공학회지. 1998;13(2):168-73.
  6. 조려화, 이준경, 조국현, 강대길, 권태오, 권지웅 등. 선학초 부탄올 추출물의 혈관 이완 효과의 기전에 대한 연구. 생약학회지. 2006;37(2):67-73.
  7. 이용호, 김만배, 정대수. 선학초 추출액이 흰쥐의 생리활성에 미치는 효과. 한국약용작물학회지. 2002;10(3):167-70.
  8. 김현주, 임혜원, 김보현, 김학수, 최신욱, 윤창순. 선학초 추출물의 항여드름균 효능 연구. 대한화장품학회지. 2006;32(1):53-8.
  9. 강세찬, 이창민, 구현정, 안동호, 최한, 이재현 등. 선학초 추출물의 간보호 효과. 생약학회지. 2006;37(1):28-32.
  10. Murayama T, Kishi N, Koshiura R, Takagi K, Furukawa T, Miyamoto K. Agrimoniin, an antitumor tannin of Agrimonia pilosa Ledeb., induces interleukin-1. Anticancer Res. 1992 Sep-Oct;12(5):1471-4.
  11. Gao K, Zhou L, Chen J, LiF, Zhang L. Experimental study on Decoctum Agrimonia pilosa Ledeb-induced apoptosis in HL-60cells in vitro. Zhong Yao Cai. 2000 Sep ;23(9): 561-2.
  12. Miyamoto K, Kishi N, Koshiura R. Antitumor activity of methanol extract from roots of Agrimonia pilosa Ledeb. Jpn J Pharmacol. 1985 May;38(1):9-16. https://doi.org/10.1254/jjp.38.9
  13. Sugi M. Cancer therapy by chinese crude drugs. In: Kondo K. Cancer therapy in China today. Tokyo:Shizenom. 1977:95-6.
  14. 이경순, 안덕균, 신민교, 김창민 외. 완역중약대사전. 서울: 도서출판정담;1997, p. 2352-5.
  15. Steller H. Mechanism and genes of cells suicide. Science. 1995;267:1145-9.
  16. Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000;102:1-4. https://doi.org/10.1016/S0092-8674(00)00003-9
  17. Meier P, Finch A, Evan G. Apoptosis in development. Nature. 2000;407:796-801. https://doi.org/10.1038/35037734
  18. Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: The proteases of the apoptotic pathway. Oncogene. 1998;17:3237-45. https://doi.org/10.1038/sj.onc.1202581
  19. Kothakota S, Azuma T, Reinhard C, et al. Caspase-3-generated fragment of gelsolin: Effector of morphological change in apoptosis. Science. 1997;278:294-8. https://doi.org/10.1126/science.278.5336.294
  20. Jonstone RW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108: 153-64. https://doi.org/10.1016/S0092-8674(02)00625-6
  21. Martinou JC, Green DR. Breaking the mitochondrial barrior Nat Rev Mol Cell Biol. 2001;1:63-7.
  22. Wang X. The expanding role of mitochondria in apoptosis. Genes & Dev. 2001;15:2922-33.
  23. Adams JM, Cory S. The Bcl-2 protein family. arbiters of cell survival. Science. 1998;281:1322-6. https://doi.org/10.1126/science.281.5381.1322
  24. Cory S, Adams JM. The bcl-2 family: regulators of the cellular life-or-death switch Nat. Rev. Cancer. 2002;2:647-56. https://doi.org/10.1038/nrc883
  25. Atan G, James MM, Stanley JK. Bcl-2 family members and the mitochondria in apoptosis. Genes & Dev. 1999;13:1899-911. https://doi.org/10.1101/gad.13.15.1899