• Title/Summary/Keyword: Agriculture Reservoir

Search Result 203, Processing Time 0.027 seconds

Calculation of Sediment Volume of the Agriculture Reservoir Using DGPS Echo-Sounder (DGPS 음향 측심기를 이용한 농업용 저수지의 퇴적량 산정)

  • Park Seung-Ki;Jeong Jae- Hoon
    • Spatial Information Research
    • /
    • v.13 no.3 s.34
    • /
    • pp.297-307
    • /
    • 2005
  • This study was performed to get the basic data for the dredging project and logical maintenance of the Yaedang reservoir. The survey of reservoir capacity for calculation of sediment volume carried out using DGPS Echo-Sounder during November $25\~30$ in 2004. The latitude and longitude signal from GPS satellite was received a second interval with the UTM coordinate system. Water depth was measured 0.2 second interval by Echo-sounder sensor in MIDAS Surveyor. The UTM coordinate datum were transformed into standard coordinate datum of Korean(TM coordinate datum) using Arc Info System. Mapping of contour was used Sufer, Arc View and Auto CAB Program Storage capacity of Yaedang reservoir was estimated by average contour area method. Result of this time investigation for useful storage determination of Yaedang reservoir was showed 4,601.585 ha-m and was differenced less 5.425ha-m the bygones useful storage.

  • PDF

Evaluation of Reservoir Drought Response Capability Considering Precipitation of Non-irrigation Period using RCP Scenario (RCP 시나리오에 따른 비관개기 누적강수량을 고려한 둑높이기 저수지의 미래 가뭄대응능력 평가)

  • Bang, JeHong;Lee, Sang-Hyun;Choi, Jin-Yong;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.31-43
    • /
    • 2017
  • Recent studies about irrigation water use have focused on agricultural reservoir operation in irrigation period. At the same time, it is significant to store water resource in reservoir during non-irrigation period in order to secure sufficient water in early growing season. In this study, Representative Concentration Pathways (RCP) 4.5, 8.5 scenarios with the Global Climate Model (GCM) of The Second Generation Earth System Model (CanESM2) were downscaled with bias correlation method. Cumulative precipitation during non-irrigation season, October to March, was analyzed. Interaction between cumulative precipitation and carry-over storage was analyzed with linear regression model for ten study reservoirs. Using the regression model, reservoir drought response ability was evaluated with expression of excess and deficiency. The results showed that future droughts will be more severe than past droughts. Especially in case of non-exceedance probability of 10%, drought in southern region seemed to be serious. Nine study reservoirs showed deficiency range from 10% to 55%, which turned out to be vulnerable for future drought. Only Jang-Chan reservoir was secure for early growing season in spite of drought with deficiency of 8% and -2%. The results of this study represents current agricultural reservoirs have vulnerability for the upcoming drought.

Analysis of Land Cover Change from Paddy to Upland for the Reservoir Irrigation Districts (토지피복지도를 이용한 저수지 수혜구역 농경지 면적 및 변화 추이 분석)

  • Kwon, Chaelyn;Park, Jinseok;Jang, Seongju;Shin, Hyungjin;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.27-37
    • /
    • 2021
  • Conversion of rice paddy field to upland has been accelerated as the central government incentivizes more profitable upland crop cultivation. The objective of this study was to investigate the current status and conversion trend from paddy to upland for the reservoir irrigation districts. Total 605 of reservoir irrigation districts whose beneficiary area is greater than 200 ha were selected for paddy-to-upland conversion analysis using the land cover maps provided by the EGIS of the Ministry of Environment. The land cover data of 2019 was used to analyze up-to-date upland conversion status and its correlation with city proximity, while land cover change between 2007 and 2019 was used for paddy-to-upland conversion trend analysis. Overall 14.8% of the entire study reservoir irrigation area was converted to upland cultivation including greenhouse and orchard areas. Approximately the portion of paddy area was reduced by 17.8% on average, while upland area was increased by 4.9% over the 12 years from 2007 to 2019. This conversion from paddy to upland cultivation was more pronounced in the Gyoenggi and Gyeongsang regions compared to other the Jeolla and Chungcheong provinces. The increase of upland area was also more notable in proximity of the major city. This study findings may assist to identify some hot reservoir districts of the rapid conversion to upland cultivation and thus plan to transition toward upland irrigation system.

Changes in Spectroscopic and Molecular Weight Characteristics of Dissolved Organic Matter in an Agriculture Reservoir during a Summer Monsoon (장마시기에 따른 농업용 저수지 내 용존 유기물 분광특성과 분자량 변화)

  • Jung, Ka-Young;Lee, Yun Kyung;Yoo, HaYoung;Nam, Gui-Sook;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.458-468
    • /
    • 2021
  • In this study, we investigated the variations of dissolved organic matter (DOM) in an agricultural reservoir during the monsoon period (June to October, 2020) with respect to the organic carbon concentration (DOC), molecular weight distribution, and optical properties. The monsoon period was divided into three phases - beginning storm (BS), during storm (DS), and after storm (AS). Our results showed significant differences in the concentrations and characteristics of DOM during the summer monsoon. The DOC concentrations were decreased after the monsoon, probably due to a dilution effect. In contrast, increasing trends were observed in the specific UV absorbance (SUVA), and relative abundances of humic-like fluorescence and larger-sized compounds. These observations implied that the large-sized and humic-like organic components with terrestrial origins strongly affected the reservoir DOM after the summer monsoon. Meanwhile, biopolymer size fraction, which is associated with algal activity, became more abundant after the monsoon. These results suggest that DOM with autochthonous sources became dominant as a result of the inflow of nutrients into the reservoir after the storm. Spatial changes in DOM within the reservoir were not pronounced as much as the temporal variations. All taken, it can be concluded that the summer monsoon simply led to the decrease of DOM concentrations while the sources and the quality of DOM underwent substantial changes, which may enrich refractory organic matter in the reservoir. This study reveals the importance of in-depth DOM quality monitoring before and after summer monsoon for effective water quality management in agricultural reservoirs.

Study on Causes and Countermeasures for the Mass Death of Fish in Reservoirs in Andong-si (안동시 저수지에서의 대량 어류 폐사에 대한 원인과 대책에 관한 연구)

  • Su Ho Bae;Sun Jin Hwang;Youn Jung Kim;Cheol Ho Jeong;Seong Yun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.52-62
    • /
    • 2023
  • This study focused on determining the specific causes and prevention methods of mass fish deaths occurred in five reservoirs (Gagugi, Neupgokgi, Danggokgi, Sagokji, and Hangokji) in Andong-si. For this purpose, a survey of agricultural land and livestock in the upper part of the reservoirs and analysis of water quality in the reservoir irrespective of whether it rains or not were conducted. We attempted to examine the changes in dissolved oxygen (DO) in the surface and bottom layers of reservoirs and changes in DO depending on the amount of livestock compost and time. Based on the above investigations, treatment plans were established to efficiently control the inflow of contaminated water into reservoirs. The rainfall and farmland areas in the upper part of the reservoir were investigated using Google and aviation data provided by the Ministry of Land, Infrastructure, and Transport. The current status of livestock farms distributed around the reservoirs was also examined because compost from these farms can flow into the reservoir when it rains. Various water quality parameters, such as phosphate phosphorus (PO4-P) and ammonium nitrogen (NH3-N), were analyzed and compared for each reservoir during the rainy season. Changes in the DO concentration and electrical conductivity (EC) were also observed at the inlet of the reservoir during raining using an automated instrument. In addition, DO was measured until the concentration reached 0 ppm in 10 min by adding livestock compost at various concentrations (0.05%, 0.1%, 0.3%, and 0.5% by wt.), where the concentration of the livestock compost represents the relative weight of rainwater. The DO concentration in the surface layer of reservoirs was 3.7 to 5.3 ppm, which is sufficient for fish survival. However, the fish could not survive at the bottom layer with DO concentration of 0.0-2.1 ppm. When the livestock compost was 0.3%, DO required 10-19 h to reach 0 ppm. Considering these results, it was confirmed that the DO in the bottom layer of the reservoir could easily change to an anaerobic state within 24 h when the livestock compost in the rainwater exceeds 0.3%. The results show that the direct cause of fish mortality is the inflow of excessive livestock compost into reservoirs during the first rainfall in spring. All the surveyed reservoirs had relatively good topographical features for the inflow of compost generated from livestock farms. This keeps the bottom layer of the reservoir free of oxygen. Therefore, to prevent fish death due to insufficient DO in the reservoir, measures should be undertaken to limit the amount of livestock compost flowing into the reservoir within 0.3%, which has been experimentally determined. As a basic countermeasure, minerals such as limestone, dolomite, and magnesia containing calcium and magnesium should be added to the compost of livestock farms around the reservoir. These minerals have excellent pollutant removal capabilities when sprayed onto the compost. In addition, measures should be taken to prevent fish death according to the characteristics of each reservoir.

Dynamic Decision Support System Using GIS and Network (GIS와 농업정보망을 이용한 동적 의사결정 지원시스템)

  • 정하우;김대식
    • Journal of Korean Society of Rural Planning
    • /
    • v.3 no.1
    • /
    • pp.96-104
    • /
    • 1997
  • The purpose of this study is to develop a dynamic DSS (Decision Support System) interfaced with GIS (Geographic Information System) and agriculture information network, In this study, DSS was developed to assist services which required tremendous and real time data in national scale. The data transmitte'd from the local area by the agriculture network were stored in DBMS (Data Base Management System) and analyzed by GIS. GIS and database tools used in this study were ARC/INFO 7.1.1 and INFORMIX 4.0. ACSAS (Agriculture Calamity Service Asist System) by the system prototype was constructed to solve the problem about the drought counterplan service which was to take the responsibility in the Ministry of Agriculture. It was easy to transfer, process, and analyze the information using the system. Specially, the meteological, the reservoir storage rate and the drought counterplan information were spatially analyzed by the functions of GIS.

  • PDF

Molecular detection of bat coronaviruses in three bat species in Indonesia

  • Dharmayanti, Ni Luh Putu Indi;Nurjanah, Diana;Nuradji, Harimurti;Maryanto, Ibnu;Exploitasia, Indra;Indriani, Risa
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.70.1-70.12
    • /
    • 2021
  • Bats are an important reservoir of several zoonotic diseases. However, the circulation of bat coronaviruses (BatCoV) in live animal markets in Indonesia has not been reported. Genetic characterization of BatCoV was performed by sequencing partial RdRp genes. Real-time polymerase chain reaction based on nucleocapsid protein (N) gene and Enzyme-linked immunosorbent assay against the N protein were conducted to detect the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA and antibody, respectively. We identified the presence of BatCoV on Cynopterus brachyotis, Macroglossus minimus, and Rousettus amplexicaudatus. The results showed that the BatCoV included in this study are from an unclassified coronavirus group. Notably, SARS-CoV-2 viral RNA and antibodies were not detected in the sampled bats.

Monitoring of Water Quality in Agricultural Reservoirs According to Trapa japonica Death Effect (농업용저수지에서 마름의 사멸에 따른 수질변화 관찰)

  • Choi, Eunhee;Yoo, Suna;Kim, Hyungjoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.148-151
    • /
    • 2016
  • BACKGROUND: There are few studies on the impacts of hydrophytes on water quality, so there is a need to research the effects of death of hydrophytes on the worsening of water quality. This study aimed to monitor the effects of Trapa japonica death on reservoir water quality.METHODS AND RESULTS: T.japonica shows the life cycle that highest growth in summer and rapid death in fall decomposing their body in general. T.japonica contains comparatively large portion of nutrients and minerals. Through the field survey using Mesocosm to identify the effects of excessive population of T.japonica on water quality, the water quality of plots planted T.japonica is gradually worse compared with the control plot. And the result of Wilcoxon-test also shows that the negative effect of T.japonica on water quality with significant (p<0.05).CONCLUSION: It is necessary to control the population growth of T.japonica in order to prevention of water pollution in fall.

The Effect of Rainfall on the Water Quality of a Small Reservoir (Lake Wangkung, Korea)

  • Hwang, Gil-Son;Kim, Jae-Ok;Kim, Jai-Ku;Kim, Young-Chul;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.39-43
    • /
    • 2005
  • The dynamics of water quality with the storm events were analyzed in a small reservoir for irrigation, Lake Wangkung. Water quality of the inflowing stream fluctuated seasonally with the variation of flow rate. Thermal stratification was consistent from April to October below 2 m depths and anoxic layer was developed below 2 m depth in summer. The unique feature of temperature showed that thermal stratification was disrupted by a heavy rain event during monsoon, but hypolimnetic hypoxia were reestablished after a few days. Phosphorus and nitrogen increased immediately following storm events. The marked increase may be due to the input of P-rich storm runoff from the watershed. Internal phosphorus loading can be one of the explanations for TP increases in summer. When there was a storm, total populations of phytoplankton and zooplankton was reduced immediately following the storm, indicating possible flushing of algae and zooplankton. After a lag period of low-density the plankton population bloomed to a peak again within five days after the storm. Turbid water in lake became clear again which coincided with the time of the phytoplankton buildup. The results demonstrate that water quality is regulated greatly by rainfall intensity in Lake Wangkung.

Monitoring of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) Residues in Arable Lands around Oil Reservoir (유류저장시설 인근 농경지 중 Benzene, Toluene, Ethylbenzene 및 Xylene (BTEX) 잔류량 모니터링)

  • Lim, Sung-Jin;Kim, Jin-Hyo;Choi, Geun-Hyoung;Cho, Nam-Jun;Hong, Jin-Hwan;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.414-418
    • /
    • 2014
  • BACKGROUND: Benzene, toluene, ethylbenzene and xylene (BTEX), which are volatile aromatic hydrocarbons and main constituents of gasoline, are neuro-carcinogenic organic pollutants in soil and groundwater. Korea Ministry of Environment has established the maximum permissible level of BTEX in arable soil to 1, 20, 50 and 15 mg/kg, respectively. METHODS AND RESULTS: To understand an arable soil contamination by BTEX, we collected 92 samples from the arable lands around oil reservoir, and analyzed the BTEX residue using a GC-MS with head-space sampler. A linear correlation between BTEX concentration and peak areas was detected with coefficient correlations in the range of 0.9807-0.9995. The method LOQ of BTEX was 0.002, 0.014, 0.084, and 0.038 mg/kg, respectively. Recoveries of 0.5 mg/kg BTEX were found to be 73.7-96.9%. The precision was reliable since RSD percentage (0.7-7.5%) was below 30, which was the normal percent value. Also, BTEX in all samples were detected under the LOQ. CONCLUSION: These results showed that the investigated arable soils around airport and oil reservoir in Korea were not contaminated by oils.