• Title/Summary/Keyword: Agricultural Robotics

Search Result 45, Processing Time 0.032 seconds

Improvements to a Modular Agricultural Robot Platform for Field Work (밭 노지 작업을 위한 모듈형 농업 로봇 플랫폼 개선에 관한 연구)

  • Kim, Dongwoo;Hong, Hyunggil;Cho, Yongjun;Yun, Haeyong;Oh, Jangseok;Gang, Minsu;Park, Huichang;Seo, Kabho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.80-87
    • /
    • 2021
  • Our study introduces an improved modular agricultural platform to provide convenience to agricultural workers. We upgrade the platform design in three parts, namely, by adding a 458 pattern tire, electricity control, and four-wheel steering function, to improve the platform performance. Results showed that the upgrades enhanced the platform performance and reduced its overall weight as compared with the existing platform. To demonstrate the performance of our improved platform, we conducted five types of experiments with respect to the climbing angle, variable width, attitude control, speed, and obstacle passing.

A Study on the Environmental-Based Turning Characteristics of Multi-Purpose Agricultural Robots (다목적 농업 로봇의 농작업 환경 기반 선회 특성 연구)

  • Lee, Ji-Won;Kang, Minsu;Park, Huichang;Cho, Yongjun;Oh, Jangseok;Kim, Min-Gyu;Seo, Kap-Ho;Park, Min-Ro
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.319-326
    • /
    • 2021
  • To improve the driving performance and work efficiency of the multi-purpose agricultural robot, this paper conducted a study on the turning and steering characteristics of the robot platform according to the characteristics of the working machine coupled to the multi-purpose agricultural robot considering the agricultural environment. First, the size and characteristics of the developed multi-purpose agricultural robot platform and working machine, and the targeted field farming work environment are analyzed. And based on this analysis, the problems that arise in multi-purpose robots with conventional turning methods are quantitatively presented. And to overcome this problem, an improved turning and steering method for multi-purpose agricultural robots is proposed considering the characteristics of various workstations and the agricultural working environment. Finally, by applying the proposed method, the turning characteristics of the multi-purpose agricultural robot according to the working machine are analyzed and the effectiveness of the proposed method is verified.

Tele-robotics in Agriculture - Tomato Harvesting Experiment -

  • Monta, Mitsuji;Kobayashi, Koji;Hirai, Takuya;Namba, Kazuhiko;Nishi, Takao
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.54-58
    • /
    • 2005
  • In this study, tele-robotics was researched to actualize robots in agriculture. The robot system consisted of a data collecting robot, several robots that performed their own agricultural operations, a server, client computers and networks between robots and computers. In this paper, as a first step, harvesting experiments were carried out. From the results, it was observed that the tele-robotics had feasibility to propel the robotization in agriculture. The tele-robotics has advantages not only that human workers are released from the severe working environment but also that the greenhouse can be monitored and controlled anytime and anywhere.

  • PDF

Development of Automatic Module Changer for Farmbot (팜봇과 연동하는 작업기 자동체결 장치 개발)

  • Kwon, Junhyuk;Lee, Myungho;Cho, Hyungho;Hong, Hyunggil;Cho, Yongjun;Yun, Haeyong;Oh, Jangseok;Park, Huichang;Gang, Minsu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.30-35
    • /
    • 2021
  • In this study, we developed an automatic module changer for agricultural implements for using in unmanned agricultural robots. An automatic module changer is attached by lowering from the top to bottom of the implements and fixing the four fastener bars attached to the implements in combination. The lift function was implemented using seesaw-type structures to keep the engagement point constant when the automatic module changer climbs and descends, and the switching function of the automatic module changer was implemented using the link device in the cam structure. We developed an algorithm to check the presence of attachment and opening/closing of the workpiece using limit switches and verified the performance through combination assessment and weight lift test to assess whether the combination was within the error range.

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

Study on the Model based Control considering Rotary Tillage of Autonomous Driving Agricultural Robot (자율주행 밭농업로봇의 로터리 경작을 고려한 모델 기반 제어 연구)

  • Song, Hajun;Yang, Kyon-Mo;Oh, Jang-Seok;Song, Su-Hwan;Han, Jong-Boo;Seo, Kap-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.233-239
    • /
    • 2020
  • The aims of this paper is to develop a modular agricultural robot and its autonomous driving algorithm that can be used in field farming. Actually, it is difficult to develop a controller for autonomous agricultural robot that transforming their dynamic characteristics by installation of machine modules. So we develop for the model based control algorithm of rotary machine connected to agricultural robot. Autonomous control algorithm of agricultural robot consists of the path control, velocity control, orientation control. To verify the developed algorithm, we used to analytical techniques that have the advantage of reducing development time and risks. The model is formulated based on the multibody dynamics methods for high accuracy. Their model parameters get from the design parameter and real constructed data. Then we developed the co-simulation that is combined between the multibody dynamics model and control model using the ADAMS and Matlab simulink programs. Using the developed model, we carried out various dynamics simulation in the several rotation speed of blades.

Development of Agriculture Robot for Unmanned Management in Controlled Agriculture (시설 농업 무인 관리를 위한 식물 생산 로봇 개발)

  • Kim, Kyoung-Chul;Ryuh, Beom-Sahng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.444-450
    • /
    • 2011
  • Environmental change, labor shortage, and international trade politics make agricultural automation ever more important. The automation demands the highest technology due to the nature of agriculture. In this paper, autonomous pesticide spray robot system has been developed for rose farming in the glass house. We developed drive platform, navigation/localization system, atomization spray system, autonomous, remote, and manual operation system, and monitoring system. The robot will be a great contribution to automation of hazardous labor-demanding chore of pesticide control in glass houses.

A Study on Modular Agricultural Robotic Platform for Upland (밭 노지 환경 주행을 위한 모듈형 농업 로봇 플랫폼에 대한 연구)

  • Cho, Yongjun;Woo, Seong Yong;Song, Su Hwan;Hong, Hyung Gil;Yun, Haeyong;Oh, Jang Seok;Kim, Junseong;Kim, Dong Woo;Seo, Kab Ho;Kim, Dae Hee
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.124-130
    • /
    • 2020
  • This paper designed modular agricultural robotic platform capable of a variety of agricultural tasks to address the problems caused by a decline in agricultural populations and an increase in average age. We propose a modular robotic platform that can perform many tasks required in field farming by replacing only work modules with common robotic platforms. This platform is capable of steering while driving on four wheels in an upland environment where farm work is performed, and an attitude control module is attached to each drive module to control the attitude of the platform. In addition, the width of the platform is designed to be variable in order to operate in various ridges according to the crop cultivation method. Finally, we evaluated five items: variable width, gradient, attitude control angle, step and road speed in order to carry out the farming industry while maintaining a stable posture.

Development of an Environmental Friendly Hybrid Power System and its Application to Agricultural Machines (친환경 하이브리드 동력 시스템 개발 및 농기계 응용)

  • Kim, Sangcheol;Hong, Youngki;Kim, Gookhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.447-452
    • /
    • 2015
  • A hybrid power system was developed for agricultural machines with a 20kW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator. The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using a hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341g/kWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7kW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. The hybrid system's lower exhaust gas emissions have considerable advantages in closed work environments such as crop production facilities. Therefore, agricultural machinery with less exhaust gas emissions should be commercialized.

Reckoning of the Agricultural Vehicle in the Field Using Acoustic Ranging

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.4-94
    • /
    • 2001
  • An acoustic ranging system was applied for reckoning the location of an agricultural vehicle in the field. The system has a number of fixed stations and a mobile station such as an agricultural vehicle. The mobile station comprises a radio frequency modulator-demodulator (RF MODEM), a buzzer, and a personal computer. The fixed station comprises an (RF MODEM), a microphone, an amplifier for the microphone, and a personal computer with a soundboard. The mobile station transmits a 7-bit ASCII code and, activates the buzzer simultaneously. The propagation delay time at the fixed station is caused by the difference ...

  • PDF