• Title/Summary/Keyword: Agresti-Coull interval

Search Result 12, Processing Time 0.022 seconds

Theoretical Considerations for the Agresti-Coull Type Confidence Interval in Misclassified Binary Data (오분류된 이진자료에서 Agresti-Coull유형의 신뢰구간에 대한 이론적 고찰)

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.445-455
    • /
    • 2011
  • Although misclassified binary data occur frequently in practice, the statistical methodology available for the data is rather limited. In particular, the interval estimation of population proportion has relied on the classical Wald method. Recently, Lee and Choi (2009) developed a new confidence interval by applying the Agresti-Coull's approach and showed the efficiency of their proposed confidence interval numerically, but a theoretical justification has not been explored yet. Therefore, a Bayesian model for the misclassified binary data is developed to consider the Agresti-Coull confidence interval from a theoretical point of view. It is shown that the Agresti-Coull confidence interval is essentially a Bayesian confidence interval.

Comparison of confidence intervals for testing probabilities of a system (시스템의 확률 값 시험을 위한 신뢰구간 비교 분석)

  • Hwang, Ik-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.435-443
    • /
    • 2010
  • When testing systems that incorporate probabilistic behavior, it is necessary to apply test inputs a number of times in order to give a test verdict. Interval estimation can be used to assert the correctness of probabilities where the selection of confidence interval is one of the important issues for quality of testing. The Wald interval has been widely accepted for interval estimation. In this paper, we compare the Wald interval and the Agresti-Coull interval for various sizes of samples. The comparison is carried out based on the test pass probability of correct implementations and the test fail probability of incorrect implementations when these confidence intervals are used for probability testing. We consider two-sided confidence intervals to check if the probability is close to a given value. Also one-sided confidence intervals are considered in the comparison in order to check if the probability is not less than a given value. When testing probabilities using two-sided confidence intervals, we recommend the Agresti-Coull interval. For one-sided confidence intervals, the Agresti-Coull interval is recommended when the size of samples is large while either one of two confidence intervals can be used for small size samples.

Confidence Intervals for a Linear Function of Binomial Proportions Based on a Bayesian Approach (베이지안 접근에 의한 모비율 선형함수의 신뢰구간)

  • Lee, Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.257-266
    • /
    • 2007
  • It is known that Agresti-Coull approach is an effective tool for the construction of confidence intervals for various problems related to binomial proportions. However, the Agrest-Coull approach often produces a conservative confidence interval. In this note, confidence intervals based on a Bayesian approach are proposed for a linear function of independent binomial proportions. It is shown that the Bayesian confidence interval slightly outperforms the confidence interval based on Agresti-Coull approach in average sense.

AN IMPROVED CONFIDENCE INTERVAL FOR THE POPULATION PROPORTION IN A DOUBLE SAMPLING SCHEME SUBJECT TO FALSE-POSITIVE MISCLASSIFICATION

  • Lee, Seung-Chun
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.275-284
    • /
    • 2007
  • Confidence intervals for the population proportion in a double sampling scheme subject to false-positive misclassification are considered. The confidence intervals are obtained by applying Agresti and Coull's approach, so-called "adding two-failures and two successes". They are compared in terms of coverage probabilities and expected widths with the Wald interval and the confidence interval given by Boese et al. (2006). The latter one is a test-based confidence interval and is known to have good properties. It is shown that the Agresti and Coull's approach provides a relatively simple but effective confidence interval.

Interval Estimation for a Binomial Proportion Based on Weighted Polya Posterior (이항 비율의 가중 POLYA POSTERIOR 구간추정)

  • Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.607-615
    • /
    • 2005
  • Recently the interval estimation of a binomial proportion is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the will-known Wald confidence interval. Various alternatives have been proposed. Among them, Agresti-Coull confidence interval has been recommended by Brown et al. (2001) with other confidence intervals for large sample, say n $\ge$ 40. On the other hand, a noninformative Bayesian approach called Polya posterior often produces statistics with good frequentist's properties. In this note, an interval estimator is developed using weighted Polya posterior. The resulting interval estimator is essentially the Agresti-Coull confidence interval with some improved features. It is shown that the weighted Polys posterior produce an effective interval estimator for small sample size and a severely skewed binomial distribution.

Interval Estimation of Population Proportion in a Double Sampling Scheme (이중표본에서 모비율의 구간추정)

  • Lee, Seung-Chun;Choi, Byong-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1289-1300
    • /
    • 2009
  • The double sampling scheme is effective in reducing the sampling cost. However, the doubly sampled data is contaminated by two types of error, namely false-positive and false-negative errors. These would make the statistical analysis more difficult, and it would require more sophisticate analysis tools. For instance, the Wald method for the interval estimation of a proportion would not work well. In fact, it is well known that the Wald confidence interval behaves very poorly in many sampling schemes. In this note, the property of the Wald interval is investigated in terms of the coverage probability and the expected width. An alternative confidence interval based on the Agresti-Coull's approach is recommended.

On Prediction Intervals for Binomial Data (이항자료에 대한 예측구간)

  • Ryu, Jea-Bok
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.943-952
    • /
    • 2013
  • Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.

On prediction intervals for binomial data (이항자료에 대한 예측구간)

  • Ryu, Jea-Bok
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.579-588
    • /
    • 2021
  • Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.

The Role of Artificial Observations in Testing for the Difference of Proportions in Misclassified Binary Data

  • Lee, Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.513-520
    • /
    • 2012
  • An Agresti-Coull type test is considered for the difference of binomial proportions in two doubly sampled data subject to false-positive error. The performance of the test is compared with the likelihood-based tests. It is shown that the Agresti-Coull test has many desirable properties in that it can approximate the nominal significance level with compatible power performance.

Confidence Intervals for a Proportion in Finite Population Sampling

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.501-509
    • /
    • 2009
  • Recently the interval estimation of binomial proportions is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the well-known Wald confidence interval. Various alternatives have been proposed. Among them, the Agresti-Coull confidence interval, the Wilson confidence interval and the Bayes confidence interval resulting from the noninformative Jefferys prior were recommended by Brown et al. (2001). However, unlike the binomial distribution case, little is known about the properties of the confidence intervals in finite population sampling. In this note, the property of confidence intervals is investigated in anile population sampling.