DOI QR코드

DOI QR Code

The Role of Artificial Observations in Testing for the Difference of Proportions in Misclassified Binary Data

  • Received : 2012.05.01
  • Accepted : 2012.06.12
  • Published : 2012.06.30

Abstract

An Agresti-Coull type test is considered for the difference of binomial proportions in two doubly sampled data subject to false-positive error. The performance of the test is compared with the likelihood-based tests. It is shown that the Agresti-Coull test has many desirable properties in that it can approximate the nominal significance level with compatible power performance.

Keywords

References

  1. Agresti, A. and Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures, The American Statistician, 54, 280-288.
  2. Agresti, A. and Coull, B. A. (1998). Approximation is better than "exact" for interval estimation of binomial proportions, The American Statistician, 52, 119-126.
  3. Agresti, A. and Min, Y. (2005). Simple improved confidence intervals for comparing matched proportions, Statistics in Medicine, 24, 729-740. https://doi.org/10.1002/sim.1781
  4. Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics, Chapman and Hall, London.
  5. Barnett, V., Haworth, J. and Smith, T. M. F. (2001). A two-phase sampling scheme with applications to auditing or sed quis custodiet ipsos custodes?, Journal of Royal Statistical Society, Series A, 164, 407-422. https://doi.org/10.1111/1467-985X.00210
  6. Blyth, C. R. and Still, H. A. (1983). Binomial confidence intervals, Journal of the American Statistical Association, 78, 108-116. https://doi.org/10.1080/01621459.1983.10477938
  7. Boese, D. H., Young, D. M. and Stamey, J. D. (2006). Confidence intervals for a binomial parameter based on binary data subject to false-positive misclassification, Computational Statistics and Data Analysis, 50, 3369-3385. https://doi.org/10.1016/j.csda.2005.08.007
  8. Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion, Statistical Science, 16, 101-133.
  9. Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information, Biometrika, 65, 457-482. https://doi.org/10.1093/biomet/65.3.457
  10. Geng, Z. and Asano, C. (1989). Bayesian estimation methods for categorical data with misclassifications, Communications in Statistics, Theory and Methods, 18, 2935-2954. https://doi.org/10.1080/03610928908830069
  11. Hildesheim, A., Mann, V., Brinton, L. A., Szklo, M., Reeves, W. C. and Rawls, W. E. (1991). Herpes simplex virus type 2: A possible interaction with human papillomavirus types 16/18 in the development of invasion cervical cancer, International Journal of Cancer, 49, 335-340. https://doi.org/10.1002/ijc.2910490304
  12. Lee, S.-C. (2007). An improved confidence interval for the population proportion in a double sampling scheme subject to false-positive misclassification, Journal of the Korean Statistical Society, 36, 275- 284.
  13. Lee, S.-C. (2010). Confidence intervals for the difference of binomial proportion in two double sampled data, Communications of the Korean Statistical Society, 17, 309-318. https://doi.org/10.5351/CKSS.2010.17.3.309
  14. Lee, S.-C. (2011). Theoretical considerations for the Agresti-Coull type confidence intervals in misclassified binary data, Communications of the Korean Statistical Society, 18, 445-455. https://doi.org/10.5351/CKSS.2011.18.4.445
  15. Lee, S.-C. and Byun, J.-S. (2008). A Bayesian approach to obtain confidence intervals for binomial proportion in a double sampling scheme subject to false-positive misclassification, Journal of the Korean Statistical Society, 37, 393-403. https://doi.org/10.1016/j.jkss.2008.05.001
  16. Moors, J. J. A., van der Genugten, B. B. and Strijbosch, L. W. G. (2000). Repeated audit controls, Statistica Neerlandica, 54, 3-13. https://doi.org/10.1111/1467-9574.00122
  17. Perry, M., Vakil, N. and Cutler, A. (2000). Admixture with whole blood does not explain false-negative urease tests, Journal of Clinical Gastroenterology, 30, 64-65. https://doi.org/10.1097/00004836-200001000-00012
  18. Price, R. M. and Bonett, D. G. (2004). An improved confidence interval for a linear function of binomial proportions, Computational Statistics and Data Analysis, 45, 449-456. https://doi.org/10.1016/S0167-9473(03)00007-0
  19. Raats, V. M. and Moors, J. J. A. (2003). Double-checking auditors: A Bayesian approach, The Statistician, 52, 351-365.
  20. Tenenbein, A. (1970). A double sampling scheme for estimating from binomial data with misclassifications, Journal of the American Statistical Association, 65, 1350-1361. https://doi.org/10.1080/01621459.1970.10481170
  21. York, J., Madigan, D., Heuch, I. and Lie, R. T. (1995). Birth defects registered by double sampling: a Bayesian approach incorporating covariates and model uncertainty, Applied Statistics, 44, 227-242. https://doi.org/10.2307/2986347

Cited by

  1. The Role of Artificial Observations in Misclassified Binary Data with Common False-Positive Error vol.25, pp.4, 2012, https://doi.org/10.5351/KJAS.2012.25.4.697