References
- Agresti, A. and Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures, The American Statistician, 54, 280-288.
- Agresti, A. and Coull, B. A. (1998). Approximation is better than "exact" for interval estimation of binomial proportions, The American Statistician, 52, 119-126.
- Agresti, A. and Min, Y. (2005). Simple improved confidence intervals for comparing matched proportions, Statistics in Medicine, 24, 729-740. https://doi.org/10.1002/sim.1781
- Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics, Chapman and Hall, London.
- Barnett, V., Haworth, J. and Smith, T. M. F. (2001). A two-phase sampling scheme with applications to auditing or sed quis custodiet ipsos custodes?, Journal of Royal Statistical Society, Series A, 164, 407-422. https://doi.org/10.1111/1467-985X.00210
- Blyth, C. R. and Still, H. A. (1983). Binomial confidence intervals, Journal of the American Statistical Association, 78, 108-116. https://doi.org/10.1080/01621459.1983.10477938
- Boese, D. H., Young, D. M. and Stamey, J. D. (2006). Confidence intervals for a binomial parameter based on binary data subject to false-positive misclassification, Computational Statistics and Data Analysis, 50, 3369-3385. https://doi.org/10.1016/j.csda.2005.08.007
- Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion, Statistical Science, 16, 101-133.
- Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information, Biometrika, 65, 457-482. https://doi.org/10.1093/biomet/65.3.457
- Geng, Z. and Asano, C. (1989). Bayesian estimation methods for categorical data with misclassifications, Communications in Statistics, Theory and Methods, 18, 2935-2954. https://doi.org/10.1080/03610928908830069
- Hildesheim, A., Mann, V., Brinton, L. A., Szklo, M., Reeves, W. C. and Rawls, W. E. (1991). Herpes simplex virus type 2: A possible interaction with human papillomavirus types 16/18 in the development of invasion cervical cancer, International Journal of Cancer, 49, 335-340. https://doi.org/10.1002/ijc.2910490304
- Lee, S.-C. (2007). An improved confidence interval for the population proportion in a double sampling scheme subject to false-positive misclassification, Journal of the Korean Statistical Society, 36, 275- 284.
- Lee, S.-C. (2010). Confidence intervals for the difference of binomial proportion in two double sampled data, Communications of the Korean Statistical Society, 17, 309-318. https://doi.org/10.5351/CKSS.2010.17.3.309
- Lee, S.-C. (2011). Theoretical considerations for the Agresti-Coull type confidence intervals in misclassified binary data, Communications of the Korean Statistical Society, 18, 445-455. https://doi.org/10.5351/CKSS.2011.18.4.445
- Lee, S.-C. and Byun, J.-S. (2008). A Bayesian approach to obtain confidence intervals for binomial proportion in a double sampling scheme subject to false-positive misclassification, Journal of the Korean Statistical Society, 37, 393-403. https://doi.org/10.1016/j.jkss.2008.05.001
- Moors, J. J. A., van der Genugten, B. B. and Strijbosch, L. W. G. (2000). Repeated audit controls, Statistica Neerlandica, 54, 3-13. https://doi.org/10.1111/1467-9574.00122
- Perry, M., Vakil, N. and Cutler, A. (2000). Admixture with whole blood does not explain false-negative urease tests, Journal of Clinical Gastroenterology, 30, 64-65. https://doi.org/10.1097/00004836-200001000-00012
- Price, R. M. and Bonett, D. G. (2004). An improved confidence interval for a linear function of binomial proportions, Computational Statistics and Data Analysis, 45, 449-456. https://doi.org/10.1016/S0167-9473(03)00007-0
- Raats, V. M. and Moors, J. J. A. (2003). Double-checking auditors: A Bayesian approach, The Statistician, 52, 351-365.
- Tenenbein, A. (1970). A double sampling scheme for estimating from binomial data with misclassifications, Journal of the American Statistical Association, 65, 1350-1361. https://doi.org/10.1080/01621459.1970.10481170
- York, J., Madigan, D., Heuch, I. and Lie, R. T. (1995). Birth defects registered by double sampling: a Bayesian approach incorporating covariates and model uncertainty, Applied Statistics, 44, 227-242. https://doi.org/10.2307/2986347
Cited by
- The Role of Artificial Observations in Misclassified Binary Data with Common False-Positive Error vol.25, pp.4, 2012, https://doi.org/10.5351/KJAS.2012.25.4.697