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AN IMPROVED CONFIDENCE INTERVAL FOR THE
POPULATION PROPORTION IN A DOUBLE SAMPLING
SCHEME SUBJECT TO FALSE-POSITIVE
MISCLASSIFICATION'

SEUNG-CHUN LEE!

ABSTRACT

Confidence intervals for the population proportion in a double sampling
scheme subject to false-positive misclassification are considered. The con-
fidence intervals are obtained by applying Agresti and Coull’s approach,
so-called “adding two-failures and two successes”. They are compared in
terms of coverage probabilities and expected widths with the Wald interval
and the confidence interval given by Boese et al. (2006). The latter one is
a test-based confidence interval and is known to have good properties. It
is shown that the Agresti and Coull’s approach provides a relatively simple
but effective confidence interval.
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1. INTRODUCTION

A double sampling scheme occurs when the cost of precise test is expensive.
To reduce the cost, a large sample is classified by an inexpensive but fallible
device, and a subsample is classified by a supplementary inerrant device. A large
amount of literature concerned about the inference on the population proportion
in the double sampling (for example, Tenenbein, 1970, 1971, 1972; Geng and
Asano, 1989; York et al., 1995; Moors et al., 2000; Barnett et al., 2001; Raats
and Moors, 2003; Boese et al., 2006). For instance, York et al. (1995) estimated
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the proportion of infants born with Down’s syndrome in Norway with a double
sampling data. Their data was collected by two stages. At the first stage, for every
birth during a certain time period, the midwife or obstetrician classified the child
with Down’s syndrome based on a visual inspection. Because the classification
by a visual inspection could not be expected to be accurate, the data might be
exposed to measurement error. Since Bross (1954) warned that usual estimators
could be extremely biased when data is subject to misclassification, it might
dangerous to use the data alone. An additional data would be required and
supplied by the second stage. A small subsample of births was classified by
accurate but expensive cytogenetic test. A double sampling data was formed by
these two stages.

The subsample might contain two types of error done by the midwife or obste-
trician. He or she might classify erroneously a normal child into Down’s syndrome
(false-positive) and vise versa (false-negative). Tenenbein (1970) presented the
maximum likelihood (ML) estimator for the population proportion as well as for
false-positive and false-negative error rates (Tenenbein, 1971, 1972). The same
ML estimator for the population proportion was derived by Barnett et al. (2001),
and was applied to a specific data analysis.

Some authors have considered the model with only one type of misclassifi-
cation. For example, Lie et al. (1994) consider the case that the false-negative
counts were corrected using multiple fallible classifiers and gave the ML estima-
tors. The same model was considered by York et al. (1995). They estimated the
proportion of Down syndrome in Norway from the Bayesian prospective. Moors
et al. (2000) discussed one-sided interval estimation in the case that only false-
negative misclassification occurs. This result was generalized by Raats and Moors
(2003) to the case with both types of misclassification. They obtained a Bayesian
posterior distribution using a conjugated prior. The posterior distribution was
utilized to construct a one-sided confidence interval.

For the interval estimation problem, Boese et al. (2006) gave asymptotic con-
fidence intervals in the false-positive misclassification model. Although the in-
tervals are based on standard frequentist methods, certain combinations of like-
lihood, Fisher-information types and likelihood-based statistics, the performance
of the intervals is remarkable in that the coverage probabilities are much close
to nominal level even with a small sample. Another interesting feature of the
intervals is that, they claimed, the intervals were the first two-sided frequentist
confidence intervals for the population proportion. However, these are test-based
confidence intervals and it is hard to compute the confidence limits. The limits



A CONFIDENCE INTERVAL FOR PROPORTION IN A DOUBLE SAMPLING 277

can be computed only numerically. One might prefer confidence intervals with
closed form.

Recently the Wald intervals for proportion or difference of two proportions
adjusted by adding two failures and two successes were shown to have remarkably
good properties compared with the original Wald intervals (Agresti and Coull,
1998; Agresti and Caffo, 2000; Price and Bonett, 2004; Agresti and Min, 2005).
More importantly, they are simple but comparable with other widely used con-
fidence intervals. It is recognized by many authors (Brown et al., 2001; Agresti
and Coull, 1998; Lee, 2006a, 2006b) that the simplicity is an important factor for
practical usage.

In this note, confidence intervals based on Agresti-Coull’s approach are con-
sidered and the coverage probabilities and the expected widths of the intervals are
compared. Since the confidence interval based on full-likelihood score statistic,
which was given by Boese et al. (2006) and denoted by CI{Sy[I,pe]}, is known
to have good properties, it is included in this comparison as a referential interval.
One might refer to Boese et al. (2006) for the performance of CI{Sy[I,pjs]}. How-
ever, they estimated the coverage probability and the expected width by a Monte
Carlo simulation. It seems that the estimate is well done enough to capture the
property of intervals, but it might be desirable to compute exact coverage prob-
abilities and expected widths for the precise comparison. Thus, we recalculate
the properties of CI{Sp[Ip 4]}

2. CONFIDENCE INTERVALS IN THE FALSE-POSITIVE MODEL

The model considered in this paper is the same that of Boese et al. (2006)
and in what follows we will use the notation of Section 2 of Boese et al. (2006).

As we noted before, a double sampling scheme consists of two stages of sam-
pling. A sample of size N is selected at random from the population of interest
and each unit in the sample is classified by a fallible device. And then a subset
of size n is selected from the initial sample. Fach unit in the subsample is tested
by an inerrant device. Thus, a unit in subsample is tested by both the inerrant
and the fallible device.

For each unit tested by the inerrant device, let T; = 1, if the ¢** unit is recorded
to be positive (or a success) with the inerrant device, and T; = 0, if otherwise.
Likely, for each unit tested by the fallible device, define F; = 1, if the :** unit is
classified into positive with the fallible device, and F; = 0, if otherwise. Because
the sample is assumed to be selected at random from an infinite population, the
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proportion of success p can be written as

p=Pr[T;=1]
and the false-positive error rate is defined to be
¢=Pr[F,=1|T;=0].

The false-negative error rate Pr[F; = 0|T; = 1] is assumed to zero in this model.
Thus each unit in the subsample belongs to one of three mutually disjoint cate-
gories {(¢, f)| (0,0),(0,1),(1,1)} with probabilities (1 — p)(1 — ¢), (1 — p)¢ and
p, respectively. Let ngs be the observed counts in (¢, f).

N — n units are tested by only fallible device. Among these units, let x
be the number of counts that test positive and y = N — n — z. Note that
N=n+4+z+y,n=ng +no1+n11 and Pr[F; =1 =p+ (1 —p)¢.

Since each unit is tested independently, the joint likelihood of p and ¢ is

L(p,¢) = A[(1 - p)(1 — §)I"°[(1 — p)g|**p" 7" (1 — 7)?, (2.1)

where 4 = n!/(ngo'no1!n11!)(¥;™) and 7 = p + (1 — p)¢. For model (2.1),
Tenenbein (1970) gave the maximum likelihood estimate of p,

ny1 T+ ng +nn

p = 2.2
P ng1 + 111 N (2:2)
and the approximation of its variance,
o= _Pd |, i1-9)*| PGP - ¢)?
=271 = 2.
Var(p) = 5 [ A1-7) | T Na@—7) (2:3)
where §=1—-p,# =p+ (1 — p)¢ and
<5_ ng1 T+ no1 +nn
nor +n11 N(1—5)
(Boese et al., 2006). Note that (2.3) can be further simplified as
o=/ _ P4 1 1 ny .
=2 (- ) —2—p1-7). 2.4
Var() = 20 - (2 - §) i - ) (2.4

Using (2.2) and (2.4), we have an asymptotic confidence interval for p, which is

given by
CHp} = P * 2a21/ Var(p) (2.5)
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and is called Wald interval.

The confidence interval based on Agresti and Coull’s approach is exactly the
same that of (2.5) with adjusted observed counts, adding 4 artificial observations.
However, in this case it is not clear how to add pseudo observations. Since
1—-7=(Q1-p)(l - ¢), one may regard (2.1) as the likelihood of data with 4
categories. Then add 1 pseudo observation to each category, which would lead to

1 1
ﬁ00=n00+-2-, fior=no1+1, an=nu+1, T=24+1, gj=y+§. (2.6)

The total number of observation and the size of subsample become N = N + 4
and @ = n + 5/2, respectively. On the other hand, it also could be considered as
the product of two binomial likelihoods. Add two failures and two successes for
each binomial count, then

oo =noo + 1, o1 =ne1 +1, A =nu+2, T=z+2, y=y+2 (2.7)

and we have N = N+8n=n+4.

Applying these two sets of artificial data to (2.2) and (2.4), we have two
Agresti-Coull type confidence intervals which will be denoted by CI{p} and CI{p},
respectively. In Section 3, we will examine the property of these two intervals
compared with Wald interval and CI{Sn[l,p]}-

3. COMPARISON RESULTS AND CONCLUSION

The effect of pseudo observations is getting smaller as n and N are increasing.
Thus we will examine the property of two Agresti-Coull type intervals in small
samples, say N = 30 to 400. The size of subsample is assumed to be 10% of the
total sample.

Figure 3.1 shows the coverage probabilities and the expected widths of four
95% confidence intervals when p = ¢ = 0.1. The values shown in the figures were
computed on every 10 from N = 30 to 400 using R 2.1.1. Obviously Wald interval
has many problems in small samples. For instance, the rate of convergence for
CI(p) is considerably slower than the other three. Also it should be noted that
Wald interval has a considerably smaller coverage probability with similar value
of width when N is relatively large, say N = 400. Thus we can conclude that the
center of CI(p) is wrong. This might justify adjusting $ somehow.

Beside Wald interval, the other three intervals are seemed to converge to-
ward the nominal confidence level as IV increases. Among the three intervals,
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Fi1GURE 3.1 Coverage probabilities (left) and expected widths (right) of 95% confidence intervals
forp=¢ = 01,N = 30 to 400 and n = 0.1N. “Sn”, “W?”, “AC1” and “AC2” represent
CHSnllypial}, CIP), CI(p) and CI(7), respectively.

FI1GURE 3.2 Coverage probabilities (left) and expected widths (right) of 95% confidence intervals
for p = 0.01 to 0.99 with ¢ = 0.1, N = 100 and n = 0.1N. “Sn”, “W”, “AC1” and “AC2”
represent CH{Sn(I,p14]}, CI(B), CI(p) and CI(p), respectively.

CI{Sn[L,p|¢]} has the closest coverage to the nominal level, which shows it has the
best characteristics with respect to approximation. However, Boese et al. (2006)
noted that CI{Sy[[,p ]} has its best performance when p is small, say p = 0.1
to 0.25. In fact, we found that as p goes to 1, the coverage of CI{S,[I,p4]} ap-
proaches to 1, but is dropped suddenly at very near 1 when N is small. Figure 3.2
depicts this phenomenon. Apparently, we could not say that CI{Sy[I,p 4]} would
be uniformly better than CI(p) and CI(p) with respect to the approximation.
The width of interval is another important property for judgment. In Figure
3.1, CI(p) has the widest expected width, but the differences in the widths are
getting smaller as N increases. The disparity in the width might be negligible
when N is large, say greater than 300. Note that when N = 300, the size of
subsample is only 30. Thus the differences are not significant from a practical
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FIGURE 3.3 Coverage probabilities (left) and expected widths (right) of 95% confidence intervals
forp=04,6 =01,N =30 to 400 and n = 0.1N. “Sn”, “W”, “AC1” and “AC2” represent
CH{Sn[Ippi6l}, CKP), CKp) and CKP), respectively.

point of view. Nonetheless, it seems that the Agresti-Coull type intervals are
unnecessarily wide. This is a common feature of intervals based on Agresti and
Coull’s approach (Agresti and Coull, 1998; Agresti and Caffo, 2000; Lee, 2006a,
2006b).

With the same configuration of parameter values of Figure 3.1 except p = 0.4,
we get Figure 3.3. Again Wald interval behaves poorly. The coverage probabilities
of CI(p) and CI{Sy[I p4|} are smaller and closer than that of CI(p) to the nominal
level. Note however, they have wider expected widths than CI(5). It is not
intuitively clear, but the result coincides with Figure 3.2. Perhaps, p is a good
choice for the center of interval. We might prefer CI(p) to other intervals in this
configuration, because CI(p) have a large value of coverage with narrow interval
width.

Based on these observations, we may conclude that both CI(p) and CI(p)
are at least practically comparable with CI{Sn[l,,4]} in terms of their perfor-
mances, and are better in simplicity. However, we could not conclude which
one is better choice among two Agresti-Coull type intervals. At the first glance,
CI(p) seems to be better. However, two intervals behave very complicatedly.
To reach a conclusion, more close examination is required. Thus with various
combinations of parameter values, N = 100, 200, 300,400, ¢ = 0.1,0.2,0.3 and
n = 0.1N,0.2N,0.3N, the coverage probability and the expected width of inter-
vals for every p = 0.01 to 0.99 were obtained to calculate the average of coverage
probabilities, the root mean square deviation (RMSD) from the nominal confi-
dence level and the average of expected widths. The average of expected width of

CI{Su[Ipp|]} is not considered in this calculation. The reason for the exclusion
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is that it is computationally too burden.
The result is tabulated in Table 3.1. Because Wald interval behaves very

TABLE 3.1 Average and RMSD of coverage probabilities, and average expected width

Mean Coverage(RMSD) Mean Expected Width
¢ n N CI{S:} CI{p} CI{p} CI{p} Ci{p} ci{p} CI{p}

100 [ 0.965(.044) 0.816(.186) 0.981(.033) 0.983(.034) 0.212 0.315 0.298

0.1N | 200|0971(.028) 0.846(.150) 0.978(.029) 0.977(:028)  0.166 0214 0.208
771300 [ 0.972(.026) 0.874(.116) 0.974(.026) 0.972(.024)  0.142 0170 0.167
400 | 0.972(.026) 0.892(.093) 0.970(.023) 0.969(.021)  0.125 0.145 0.143

100 [ 0.968(.046) 0.872(.138) 0.970(.022) 0.963(.018) 0.195 0234 0.229

011 0.9 |200|0-970(.029) 0.008(.087) 0.964(.017) 0.958(.010) 0.144 0.160 0.159
71300 [ 0.970(.027) 0.921(.065) 0.961(.014) 0.956(.008) 0.119 0.128 0.128
400 { 0.970(.026) 0.928(.048) 0.959(.012) 0.955(.006) 0.104 0.110 0.110

100 [ 0.966(.046) 0.898(.110) 0.963(.016) 0.952(.017) 0.182 0.202 0.201

0.3 | 200|0.969(.029) 0.925(.062) 0.958(.011) 0.951(:012) 0.132 0.140 0.140
71300 [0.971(.027) 0.932(.044) 0.956(.009) 0.951(.007) 0.109 0.113 0.113
400 | 0.971(.028) 0.937(.030) 0.955(.008) 0.950(.007)  0.094 0.097 0.097
100]0.964(.049) 0.755(.235) 0.977(.029) 0.974(.020) 0.255 0.340 0.324

01N | 200|0.971(.030) 0.837(.154) 0.970(.025) 0.968(.022) 0.204 0239 0.233
771300 (0.972(.027) 0.869(.120) 0.966(.023) 0.965(.019) 0.173 0.193 0.190
400 | 0.972(.027) 0.887(.098) 0.964(.021) 0.963(.017)  0.153 0.166 0.165

100 | 0.965(.050) 0.859(.147) 0.967(.020) 0.960(.013)  0.223 0.254 0.249

02| 0o |200[0-970(.031) 0.002(.089) 0.961(.017) 0.957(.008) ~ 0.166 0.177 0.176
“"1 300 | 0.972(.028) 0.917(.067) 0.959(.015) 0.956(.007) 0.137 0.144 0.143
400 | 0.972(.027) 0.924(.050) 0.957(.013) 0.955(.006) 0.120 0.124 0.124

100 [ 0.965(.050) 0.892(.114) 0.961(.016) 0.952(.011) 0.201 0.217 0.216

0.3 | 200(0.970(031) 0.921(.063) 0.957(.012) 0.951(.008) 0146 0152 0.152
1300 | 0.971(.028) 0.930(.046) 0.955(.010) 0.952(.005) 0.120 0.124 0.124
400 | 0.972(.028) 0.935(.032) 0.954(.009) 0.951(.005)  0.105 0.107 0.107

100 | 0.962(.055) 0.746(.244) 0.972(.025) 0.967(.025) 0.290 0.360 0.346

01N | 200]0970(.033) 0.836(.160) 0.965(.023) 0.963(.019)  0.230 0258 0.253
771 300 [ 0.972(.028) 0.868(.126) 0.962(.021) 0.961(.017)  0.195 0.211 0.208
400 | 0.972(.027) 0.886(.104) 0.960(.019) 0.959(.016)  0.172 0.182 0.181

100 [ 0.963(-055) 0.855(.152) 0.964(.020) 0.958(.011)  0.245 0.270 0.266

0.3 | 0.2 | 200|0.969(033) 0.899(.092) 0.959(.017) 0.957(.009)  0.181 0.191 0.190
“71300 [ 0.971(.028) 0.914(.070) 0.957(.015) 0.955(.008) 0.150 0.155 0.155
400 | 0.971(.027) 0.923(.054) 0.956(.013) 0.955(.007) 0.131 0.134 0.134

100 | 0.962(.055) 0.888(.117) 0.960(.016) 0.953(.007)  0.216 0.229 0.228

03 | 200|0.969(.033) 0.919(.065) 0.956(.013) 0.952(.006) 0157 0.162 0.162
1 300 [ 0.970(.028) 0.928(.048) 0.955(.011) 0.952(.004) 0.129 0.132 0.132
400 | 0.971(.028) 0.934(.034) 0.954(.009) 0.952(.004) 0.112 0.114 0.114
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FIGURE 3.4 Coverage probabilities for p = 0.01 to 0.99 with ¢ = 0.1, N = 400 and n = 0.1N.
“Sn”, “W”, “AC1” and “AC2” represent CHSn|l pel}, CIB), CIp) and CI(p), respectively.

poorly compared with others, we may safely exclude it in what follow. Note that
among the three, CI(p) has the closest average coverage probability to nominal
level 95% in most cases, and always has smaller average expected width than
CI(p). Apparently CI(p) outperforms and hence is preferable to CI(p) in average
sense.

Note also, it is intuitively clear that the average coverage probability should
be approaching to the nominal level as N or n increases. Two Agresti-Coull type
intervals show this pattern. However, CI{S,[I, 4]} disagrees with the pattern.
Although the RMSD of CI{S,[I 4|} decreases as N gets increasing, the best
approximation occurs when N is small. The increment of N or n does not nec-
essarily improve the approximation in average sense. One might be wondering
about this fact because it is based on a novel large sample theory. We believe
that it might be due to the fact that as you can see in Figure 3.2, with small
N, the coverage probability is suddenly dropped toward O as p approaches to 1.
This would make the average coverage small to fit the nominal level with large
RMSD. Figure 3.4 demonstrates that the size of drop is reduced by enlarging N,
which in turn enlarges the average coverage probability but reduce RMSD. As
you can see, CI{Sy[I 4]} has normally larger coverage than nominal level. This
is true for CI(p) and CI(p) too, but CI(p) gives better approximation in average
sense. This might justify the usability of CI(p). However, it is desirable to reduce
the width of CI(p) somehow. We believe that a noninformative Bayes approach
might do work well as in Lee (2006a, 2006b).
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