• Title/Summary/Keyword: Aging failure

Search Result 328, Processing Time 0.031 seconds

A Comparison of the Failure Mechanism for High Power Converted White LEDs(3W) (고 출력 백색 변환용 LED(3W용)의 고장메커니즘 비교)

  • Yun, Yang-Gi;Jang, Jung-Sun
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.177-186
    • /
    • 2012
  • This paper presents a comparison of the failure mechanism for high power converted white LEDs(3W) with the commercially available YAG:Ce and silicate phosphor. We carry out the normal aging life test for 10,000 hours, the high temperature aging test for 8,000 hours, the high temperature and humidity aging test for 8,000 hours and the current aging testing for 5,000 hours. The optical and electrical parameters of LEDs were monitored, such as lumen, correlated color temperature (CCT), chromaticity coordinates(x, y), thermal resistance, I -V curve and spectrum intensity. The stress induced a luminous flux decay on LED in all experiments and causes a failure. So we try to find out what's a main failure mechanism for a high power LED.

Mean Life Assessment and Prediction of the Failure Probability of Combustion Turbine Generating Unit with Data Analytic Method Based on Aging Failure Data (통계적 분석방법을 이용한 복합화력 발전설비의 평균수명 계산 및 고장확률 예측)

  • Lee, Sung-Hoon;Lee, Seung-Hyuk;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.10
    • /
    • pp.480-486
    • /
    • 2005
  • This paper proposes a method to consider an aging failure probability and survival probability of power system components, though only aging failure probability has been considered in existing mean life calculation. The estimates of the mean and its standard deviation is calculated by using Weibull distribution, and each estimated parameters is obtained from Data Analytic Method (Type H Censoring). The parameter estimation using Data Analytic Method is simpler and faster than the traditional calculation method using gradient descent algorithm. This paper shows calculation procedure of the mean life and its standard deviation by the proposed method and illustrates that the estimated results are close enough to real historical data of combustion turbine generating units in Korean systems. Also, this paper shows the calculation procedures of a probabilistic failure prediction through a stochastic data analysis. Consequently, the proposed methods would be likely to permit that the new deregulated environment forces utilities to reduce overall costs while maintaining an are-related reliability index.

A Scan-Based On-Line Aging Monitoring Scheme

  • Yi, Hyunbean;Yoneda, Tomokazu;Inoue, Michiko
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.124-130
    • /
    • 2014
  • In highly reliable and durable systems, failures due to aging might result in catastrophes. Aging monitoring techniques to prevent catastrophes by predicting such a failure are required. This paper presents a scan-based on-line aging monitoring scheme which monitors aging during normal operation and gives an alarm if aging is detected so that the system users take action before a failure occurs. We illustrate our modified scan chain architecture and aging monitoring control method. Experimental results show our simulation results to verify the functions of the proposed scheme.

Two Factors Failure Model of Oil-Paper Insulation Aging under Electrical and Thermal Multistress

  • Li, Jian;Wang, Yan;Bao, Lianwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.957-963
    • /
    • 2014
  • Converter transformers play important roles in high-voltage direct current transmission systems. This paper presents experimental and analysis results of the combined electrical and thermal aging of oil-impregnated paper at pulsating DC voltages. Breakdown voltages and time-to-breakdown of oil-paper specimens were measured by using short-time and constant-stress tests. The breakdown characteristics of combined electrical and thermal aging on insulation system were discussed. According to the relationship between failure time and aging temperature, the two-parameter Weibull model was improved. On the basis of the competing risk algorithm and the improved Weibull model, the two factors failure model was calculated. And the influence of temperature in the insulation system has been analyzed. This model performs better than the two-parameter Weibull model when both time and temperature are considered as variables in estimating the lifetime of oil-paper insulation.

A Study of Life about Naturally Aged Nitrocellulose by Storage (자연 노화된 니트로셀룰로오스의 수명에 관한 연구)

  • Kim, Dong-seong;Jin, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.595-601
    • /
    • 2020
  • During the safety inspection of nitrocellulose-made explosive containers stored for more than 10 years, cracks were found in the containers. Therefore, a failure cause analysis test was performed. First, the cause of failure through the failure tree analysis was conducted to select the factors that influenced failure. The changes in the properties of the container caused by the acceleration of the reaction were found to be the cause of the failure by confirming the influence on the environment and internal/external factors that may occur during storage. To confirm this, environmental tests, such as thermal shock test and vacuum thermal stability test, were performed using a naturally aged container to analyze the cause of failure, and an accelerated aging test was performed to reproduce the failure. Through this, the chemical reaction was accelerated by heat and charge, as in the result of the fault tree analysis, and it was confirmed that the physical properties of the container were changed. In addition, the service life of the container was estimated using the Arrhenius model for the storage life due to thermal aging.

Design of a Low Power Self-tuning Digital System Considering Aging Effects (노화효과를 고려한 저전력 셀프 튜닝 디지털 시스템의 설계)

  • Lee, Jin-Kyung;Kim, Kyung Ki
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • It has become ever harder to design reliable circuits with each nanometer technology node; under normal operation conditions, a transistor device can be affected by various aging effects resulting in performance degradation and eventually design failure. The reliability (aging) effect has traditionally been the area of process engineers. However, in the future, even the smallest of variations can slow down a transistor's switching speed, and an aging device may not perform adequately at a very low voltage. Therefore, circuit designers need to consider these reliability effects in the early stages of design to make sure there are enough margins for circuits to function correctly over their entire lifetime. However, such an approach excessively increases the size and power dissipation of a system. As the impact of reliability, new techniques in designing aging-resilient circuits are necessary to reduce the impact of the aging stresses on performance, power, and yield or to predict the failure of a system. Therefore, in this paper, a novel low power on-chip self-tuning circuit considering the aging effects has been proposed.

Bayesian Value of Information Analysis with Linear, Exponential, Power Law Failure Models for Aging Chronic Diseases

  • Chang, Chi-Chang
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.200-219
    • /
    • 2008
  • The effective management of uncertainty is one of the most fundamental problems in medical decision making. According to the literatures review, most medical decision models rely on point estimates for input parameters. However, it is natural that they should be interested in the relationship between changes in those values and subsequent changes in model output. Therefore, the purpose of this study is to identify the ranges of numerical values for which each option will be most efficient with respect to the input parameters. The Nonhomogeneous Poisson Process(NHPP) was used for describing the behavior of aging chronic diseases. Three kind of failure models (linear, exponential, and power law) were considered, and each of these failure models was studied under the assumptions of unknown scale factor and known aging rate, known scale factor and unknown aging rate, and unknown scale factor and unknown aging rate, respectively. In addition, this study illustrated developed method with an analysis of data from a trial of immunotherapy in the treatment of chronic Granulomatous disease. Finally, the proposed design of Bayesian value of information analysis facilitates the effective use of the computing capability of computers and provides a systematic way to integrate the expert's opinions and the sampling information which will furnish decision makers with valuable support for quality medical decision making.

Evaluation of the bond strength between aged composite cores and luting agent

  • Polat, Serdar;Cebe, Fatma;Tuncdemir, Aliriza;Ozturk, Caner;Usumez, Aslihan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate effect of different surface treatment methods on the bond strength between aged composite-resin core and luting agent. MATERIALS AND METHODS. Seventy-five resin composites and also seventy-five zirconia ceramic discs were prepared. 60 composite samples were exposed to thermal aging (10,000 cycles, 5 to $55^{\circ}C$) and different surface treatment. All specimens were separated into 5 groups (n=15): 1) Intact specimens 2) Thermal aging-air polishing 3) Thermal aging- Er:YAG laser irradiation 4) Thermal aging- acid etching 5) Thermal-aging. All specimens were bonded to the zirconia discs with resin cement and fixed to universal testing machine and bond strength testing loaded to failure with a crosshead speed of 0.5 mm/min. The fractured surface was classified as adhesive failure, cohesive failure and adhesive-cohesive failure. The bond strength data was statistically compared by the Kruskal-Wallis method complemented by the Bonferroni correction Mann-Whitney U test. The probability level for statistical significance was set at ${\alpha}$=.05. RESULTS. Thermal aging and different surface treatment methods have significant effect on the bond strength between composite-resin cores and luting-agent (P<.05). The mean baseline bond strength values ranged between $7.07{\pm}2.11$ and $26.05{\pm}6.53$ N. The highest bond strength of $26.05{\pm}6.53$ N was obtained with Group 3. Group 5 showed the lowest value of bond strength. CONCLUSION. Appropriate surface treatment method should be applied to aged composite resin cores or aged-composites restorations should be replaced for the optimal bond strength and the clinical success.

Evaluation of Service life for a Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 구조 수명 평가)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyoung-Geun;Doh, Young-Dae
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.23-30
    • /
    • 2008
  • In this paper, the effect of the natural aging on the strength distribution and structural service life of a Filament Wound (FW) composite pressure vessel was studied. The fiber failure strain, which is varied significantly, was considered as the design random variable and the strength analysis was carried out by probabilistic numerical approach. The progressive failure analysis technique and the First Order Reliability Method (FORM) were embedded in this numerical model. As the calculation results, the probability of failure was obtained for each aging time steps and it is found that the strength degradation in FW composite pressure vessel, due to the natural aging, appears within 10 year-aging-time. As an example of the life prediction under natural aging using arbitrary laminated model, the service lifetime of 13 years was predicted based on the probability of failure of 2.5% and the design pressure of 3,250 psi.

Investigation of Thermal/hygrothermal Aging Effects on the Ignition Characteristics of Ti Metal-based Pyrotechnics and Construction of the Aging Models (열/수분노화로 인한 Ti 금속 기반의 파이로 물질의 점화 성능 변화와 노화 모델 제시)

  • Oh, Juyoung;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.26-41
    • /
    • 2021
  • Titanium hydride potassium perchlorate (THPP) has played an important role as initiators of the propulsion system. However, the 'aging' may cause performance degradation and even give rise to a failure in the total system. In this study, various hygrothermal aging conditions were considered and the aging effects on thermodynamic and ignition characteristics of THPP are provided via thermal analysis and ignition measurements. Also, physical-chemical changes were identified by morphological analysis. In conclusion, thermal aging led to Eα decrease-high reactivity due to oxidizer decomposition whereas hygrothermal aging gave rise to an opposite tendency by fuel oxidation.