• 제목/요약/키워드: Aging Rat

검색결과 164건 처리시간 0.024초

Effects of amino acids on ethanol metabolism and oxidative stress in the ethanol-perfused rat liver

  • Park, Yeong-Chul;Oh, Se-In;Lee, Mee-Sook;Park, Sang-Chul
    • 한국환경성돌연변이발암원학회지
    • /
    • 제16권1호
    • /
    • pp.13-18
    • /
    • 1996
  • One mechanism of free-radical production by ethanol is suggested to be through the intracellular conversion of XDH to XO by increased ratio of NADH to NAD. The major mechanism for physiological compensation of cytosolic NADH/NAD balance is the malate/aspartate shutfie. Therefore, it is important to develop the method to improve the efficiency of malate/aspartate shuttle in ethanol metabolism. In the present study, various amino acids and organic acid involved in the shuttle were tested for their functional efficiency in modulating shuttle in the ethanol-perfused rat liver. The rate of ethanol oxidation in the liver perfused with aspartate alone or aspartate in combination with pyruvate, respectively, was increased by about 10% compared to control liver, but not in the tissues perfused with glummate, cysteine or pyruvate alone. Though glummate, cysteine and pyravate did not affect the ethanol oxidation significanfiy, they showed some suppresive effect on the ethanol-induced radical generation monitored by protein carbonylation analysis. Among the tested components, aspartate is confirmed to be the most efficient as a metabolic regulator for both ethanol oxidation and ethanol-induced oxidative stress in our perfusion system. These effects of aspartate would result from NAD recycling by its supplementation through the coupled aspartate aminotransferase/malate dehydrogenase reactions and the malate-aspartate shuttle.

  • PDF

흰쥐 신경병증성 통증 모델에서 전침이 케모카인이 유도하는 척수 교세포 활성화 조절에 미치는 영향 (Effects of Electroacupuncture on the Regulation of Chemokine Induced Spinal Activation of Microglia in the Rat Model of Neuropathic Pain)

  • 비슈누몰라칼라 신드후리;이지은;박혜지;김소희;구성태
    • Korean Journal of Acupuncture
    • /
    • 제36권4호
    • /
    • pp.264-273
    • /
    • 2019
  • Objectives : Microglia play a crucial role in electroacupuncture (EA) analgesia on neuropathic pain. The role of chemokines in producing analgesic effects of EA, however, is largely unknown. In the present study, we investigated the role of chemokines in producing analgesic effects of EA in the neuropathic pain model. Methods : Sprague-Dawley rats were randomly assigned into three groups (anesthetized group (ANE), non-acupoint EA group (NAP), and ST36 - GB34 EA group (ACU)). Neuropathic pain was induced by tight ligation of L5 spinal nerve. Mechanical and thermal hypersensitivity of hind paw was tested. Western blot tests and immunofluorescence assay for C-C motif chemokine ligand 2 (CCL2) levels and microglia activation were performed on spinal cord L5/6. EA was treated once daily from the 3rd day after surgery for 5 days. Results : EA treatments applied to ST36 and GB34 significantly reduced both mechanical and thermal hypersensitivity after two and three times of treatment, respectively. While CCL2 expression significantly increased in neuropathic rats, it was significantly reduced in the ACU. In addition, co-localization of CCL2 and activated microglia significantly decreased in the ACU compared to those of ANE and NAP in the spinal cord L5/L6 dorsal horn. Conclusions : The present results suggest that EA applied to ST36 and GB34 modulates the reduction of CCL2 release from the injured neurons and consequently decreases microglia activation in the spinal cord. Regulation of chemokine induced spinal activation of microglia plays a key role in analgesic effects of EA in the rat model of neuropathic pain.

Kinetic Changes of COX-2 Expression during Reperfusion Period after Ischemic Preconditioning Play a Role in Protection Against Ischemic Damage in Rat Brain

  • Kang, Young-Jin;Park, Min-Kyu;Lee, Hyun-Suk;Choi, Hyoung-Chul;Lee, Kwang-Youn;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권5호
    • /
    • pp.275-280
    • /
    • 2008
  • A brief ischemic insult induces significant protection against subsequent massive ischemic events. The molecular mechanisms known as preconditioning (PC)-induced ischemic tolerance are not completely understood. We investigated whether kinetic changes of cyclooxygenase (COX)-2 during reperfusion time-periods after PC were related to ischemic tolerance. Rats were given PC by occlusion of middle cerebral artery (MCAO) for 10 min and sacrificed after the indicated time-periods of reperfusion (1, 2, 4, 8, 12, 18 or 24 h). In PC-treated rats, focal ischemia was induced by occlusion of MCA for 24 h and brain infarct volume was then studied to determine whether different reperfusion time influenced the damage. We report that the most significant protection against focal ischemia was obtained in rats with 8 h reperfusion after PC. Administration of indomethacin (10 mg/kg, oral) or rofecoxib (5 mg/kg, oral) 48 h prior to PC counteracted the effect of PC. Immunohistochemical analysis showed that COX-2 and HO-l protein were induced in PC-treated rat brain, which was significantly inhibited by rofecoxib. Taken together, we concluded that the kinetic changes of COX-2 expression during the reperfusion period after PC might be partly responsible for ischemic tolerance.

Reciprocal Effect of DHEA and Rietary Fat on Glutathione Utilizing Detoxifying System in Rat Liver Tissue

  • Kwak, Chung-Shil;Kwon, In-Soon;Park, Sang-Chul
    • Nutritional Sciences
    • /
    • 제3권1호
    • /
    • pp.11-17
    • /
    • 2000
  • This study was intended to examine whether dehydroepiandrosterone (DHEA) and dietary fat level or source could modulate glutathione utilizing detoxifying system activity and the cytosolic NADPH generation in rat liver. Male Sprague-Dawley rats were fed semipurifed diet containing either 2%(w/w) corn oil (low level of corn oil diet: 5 ca% of fat) 15% corn oil (high level of corn oil diet: 31 cal% of fat) or 13% sardine oil plus 2% corn oil(high level of fish oil diet: 31 cal% of fat) for 9 weeks. Half of the rats in each diet group were fed a diet supplemented with 0.2% DHEA (w/w). DHEA administration increased plasma total cholesterol level in low corn oil diet-fed rats. The high fish oil diet significantly decreased plasma total cholesterol level compared to the high corn oil diet. Plasma triglyceride level was not significantly changed by DHEA administration and dietary fat level and source. Fasting plasma glucose level was increased by DHEA administration and fish oil diet. Glucose 6-phosphate dehydrogenase activity in liver tissue was significantly increased by DHEA administration and high fat diet, especially fish oil diet. Malic enzyme activity in liver tissue was significantly increased by DHEA administration and high fat diet, especially fish oil diet. Malic enzyme activity in liver tissue was significantly increased by DHEA administration. DHEA suppressed the glutathione peroxidase, glutathione-dependent enzymes compared to the low corn oil diet, while fish oil diet elevated the activity of glutathione peroxidase and glutathione reductase compared to corn oil diet. These results suggest that DHEA administration and high level of corn oil diet may suppress the cellular detoxifying system activity through reduction of glutathione utilization, while the fish oil diet did not show these effects.

  • PDF

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji;Kim, Do Gyeong;Gonzales, Edson Luck;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.530-539
    • /
    • 2019
  • Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.

Tenovin-1 Induces Senescence and Decreases Wound-Healing Activity in Cultured Rat Primary Astrocytes

  • Bang, Minji;Ryu, Onjeon;Kim, Do Gyeong;Mabunga, Darine Froy;Cho, Kyu Suk;Kim, Yujeong;Han, Seol-Heui;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.283-289
    • /
    • 2019
  • Brain aging induces neuropsychological changes, such as decreased memory capacity, language ability, and attention; and is also associated with neurodegenerative diseases. However, most of the studies on brain aging are focused on neurons, while senescence in astrocytes has received less attention. Astrocytes constitute the majority of cell types in the brain and perform various functions in the brain such as supporting brain structures, regulating blood-brain barrier permeability, transmitter uptake and regulation, and immunity modulation. Recent studies have shown that SIRT1 and SIRT2 play certain roles in cellular senescence in peripheral systems. Both SIRT1 and SIRT2 inhibitors delay tumor growth in vivo without significant general toxicity. In this study, we investigated the role of tenovin-1, an inhibitor of SIRT1 and SIRT2, on rat primary astrocytes where we observed senescence and other functional changes. Cellular senescence usually is characterized by irreversible cell cycle arrest and induces senescence- associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity. Tenovin-1-treated astrocytes showed increased SA-${\beta}$-gal-positive cell number, senescence-associated secretory phenotypes, including IL-6 and IL-$1{\beta}$, and cell cycle-related proteins like phospho-histone H3 and CDK2. Along with the molecular changes, tenovin-1 impaired the wound-healing activity of cultured primary astrocytes. These data suggest that tenovin-1 can induce cellular senescence in astrocytes possibly by inhibiting SIRT1 and SIRT2, which may play particular roles in brain aging and neurodegenerative conditions.

Cordycepin from Medicinal Fungi Cordyceps militaris Mitigates Inflammaging-Associated Testicular Damage via Regulating NF-κB/MAPKs Signaling in Naturally Aged Rats

  • Kopalli, Spandana Rajendra;Cha, Kyu-Min;Cho, Jae Youl;Kim, Si-Kwan;Koppula, Sushruta
    • Mycobiology
    • /
    • 제50권1호
    • /
    • pp.86-95
    • /
    • 2022
  • Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1β, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-κB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.

Suppressive Effect of 4-Hydroxy-2-(4-Hydroxyphenethyl) Isoindoline-1,3-Dione on Ovalbumin-Induced Allergic Asthma

  • Huang, Jin;Su, Mingzhi;Lee, Bo-Kyung;Kim, Mee-Jeong;Jung, Jee H.;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.539-545
    • /
    • 2018
  • 4-Hydroxy-2-(4-hydroxyphenethyl)isoindoline-1,3-dione (PD1) is a synthetic phthalimide derivative of a marine compound. PD1 has peroxisome proliferator-activated receptor (PPAR) ${\gamma}$ agonistic and anti-inflammatory effects. This study aimed to investigate the effect of PD1 on allergic asthma using rat basophilic leukemia (RBL)-2H3 mast cells and an ovalbumin (OVA)-induced asthma mouse model. In vitro, PD1 suppressed ${\beta}$-hexosaminidase activity in RBL-2H3 cells. In the OVA-induced allergic asthma mouse model, increased inflammatory cells and elevated Th2 and Th1 cytokine levels were observed in bronchoalveolar lavage fluid (BALF) and lung tissue. PD1 administration decreased the numbers of inflammatory cells, especially eosinophils, and reduced the mRNA and protein levels of the Th2 cytokines including interleukin (IL)-4 and IL-13, in BALF and lung tissue. The severity of inflammation and mucin secretion in the lungs of PD1-treated mice was also less. These findings indicate that PD1 could be a potential compound for anti-allergic therapy.

Mangiferin ameliorates cardiac fibrosis in D-galactose-induced aging rats by inhibiting TGF-β/p38/MK2 signaling pathway

  • Cheng, Jing;Ren, Chaoyang;Cheng, Renli;Li, Yunning;Liu, Ping;Wang, Wei;Liu, Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권2호
    • /
    • pp.131-137
    • /
    • 2021
  • Aging is the process spontaneously occurred in living organisms. Cardiac fibrosis is a pathophysiological process of cardiac aging. Mangiferin is a well-known C-glucoside xanthone in mango leaves with lots of beneficial properties. In this study, rat model of cardiac fibrosis was induced by injected with 150 mg/kg/d D-galactose for 8 weeks. The age-related cardiac decline was estimated by detecting the relative weight of heart, the serum levels of cardiac injury indicators and the expression of hypertrophic biomakers. Cardiac oxidative stress and local inflammation were measured by detecting the levels of malondialdehyde, enzymatic antioxidant status and proinflammatory cytokines. Cardiac fibrosis was evaluated by observing collagen deposition via masson and sirius red staining, as well as by examining the expression of extracellular matrix proteins via Western blot analysis. The cardiac activity of profibrotic TGF-β1/p38/MK2 signaling pathway was assessed by measuring the expression of TGF-β1 and the phosphorylation levels of p38 and MK2. It was observed that mangiferin ameliorated D-galactose-induced cardiac aging, attenuated cardiac oxidative stress, inflammation and fibrosis, as well as inhibited the activation of TGF-β1/p38/MK2 signaling pathway. These results showed that mangiferin could ameliorate cardiac fibrosis in D-galactose-induced aging rats possibly via inhibiting TGF-β/p38/MK2 signaling pathway.

Minoxidil Regulates Aging-Like Phenotypes in Rat Cortical Astrocytes In Vitro

  • Minji Bang;Seung Jin Yang;TaeJin Ahn;Seol-Heui Han;Chan Young Shin;Kyoung Ja Kwon
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.116-126
    • /
    • 2023
  • Mainly due to the slanted focus on the mechanism and regulation of neuronal aging, research on astrocyte aging and its modulation during brain aging is scarce. In this study, we established aged astrocyte culture model by long-term culturing. Cellular senescence was confirmed through SA-β-gal staining as well as through the examination of morphological, molecular, and functional markers. RNA sequencing and functional analysis of astrocytes were performed to further investigate the detailed characteristics of the aged astrocyte model. Along with aged phenotypes, decreased astrocytic proliferation, migration, mitochondrial energetic function and support for neuronal survival and differentiation has been observed in aged astrocytes. In addition, increased expression of cytokines and chemokine-related factors including plasminogen activator inhibitor -1 (PAI-1) was observed in aged astrocytes. Using the RNA sequencing results, we searched potential drugs that can normalize the dysregulated gene expression pattern observed in long-term cultured aged astrocytes. Among several candidates, minoxidil, a pyrimidine-derived anti-hypertensive and anti-pattern hair loss drug, normalized the increased number of SA-β-gal positive cells and nuclear size in aged astrocytes. In addition, minoxidil restored up-regulated activity of PAI-1 and increased mitochondrial superoxide production in aged astrocytes. We concluded that long term culture of astrocytes can be used as a reliable model for the study of astrocyte senescence and minoxidil can be a plausible candidate for the regulation of brain aging.