DOI QR코드

DOI QR Code

Minoxidil Regulates Aging-Like Phenotypes in Rat Cortical Astrocytes In Vitro

  • Minji, Bang (Biological Science, College of Science & Technology, Dankook University) ;
  • Seung Jin, Yang (Department of Life Science, Handong Global University) ;
  • TaeJin, Ahn (Department of Life Science, Handong Global University) ;
  • Seol-Heui, Han (Department of Neurology, Konkuk Hospital Medical Center) ;
  • Chan Young, Shin (Department of Neuroscience and Pharmacology, School of Medicine, Konkuk University) ;
  • Kyoung Ja, Kwon (Department of Neuroscience and Pharmacology, School of Medicine, Konkuk University)
  • Received : 2022.11.10
  • Accepted : 2022.11.25
  • Published : 2023.01.01

Abstract

Mainly due to the slanted focus on the mechanism and regulation of neuronal aging, research on astrocyte aging and its modulation during brain aging is scarce. In this study, we established aged astrocyte culture model by long-term culturing. Cellular senescence was confirmed through SA-β-gal staining as well as through the examination of morphological, molecular, and functional markers. RNA sequencing and functional analysis of astrocytes were performed to further investigate the detailed characteristics of the aged astrocyte model. Along with aged phenotypes, decreased astrocytic proliferation, migration, mitochondrial energetic function and support for neuronal survival and differentiation has been observed in aged astrocytes. In addition, increased expression of cytokines and chemokine-related factors including plasminogen activator inhibitor -1 (PAI-1) was observed in aged astrocytes. Using the RNA sequencing results, we searched potential drugs that can normalize the dysregulated gene expression pattern observed in long-term cultured aged astrocytes. Among several candidates, minoxidil, a pyrimidine-derived anti-hypertensive and anti-pattern hair loss drug, normalized the increased number of SA-β-gal positive cells and nuclear size in aged astrocytes. In addition, minoxidil restored up-regulated activity of PAI-1 and increased mitochondrial superoxide production in aged astrocytes. We concluded that long term culture of astrocytes can be used as a reliable model for the study of astrocyte senescence and minoxidil can be a plausible candidate for the regulation of brain aging.

Keywords

Acknowledgement

This work was supported by the Brain Research Program (2019M3C7A1031455) and the Basic Science Research Program (2022R1A2C1005917) through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT & Future Planning, and the NRF grant funded by the Korea government (MSIT) (2016R1A5A2012284, 2017M3A9G2077568 and 2020M3E5D9080165).

References

  1. Abbott, N. J., Ronnback, L. and Hansson, E. (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41-53. https://doi.org/10.1038/nrn1824
  2. Angelucci, F., Cechova, K., Prusa, R. and Hort, J. (2019) Amyloid beta soluble forms and plasminogen activation system in Alzheimer's disease: consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci. Ther. 25, 303-313. https://doi.org/10.1111/cns.13082
  3. Ashcroft, G. S., Jeong, M. J., Ashworth, J. J., Hardman, M., Jin, W., Moutsopoulos, N., Wild, T., McCartney-Francis, N., Sim, D., McGrady, G., Song, X. Y. and Wahl, S. M. (2012) Tumor necrosis factor-alpha (TNF-alpha) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen. 20, 38-49. https://doi.org/10.1111/j.1524-475X.2011.00748.x
  4. Baker, D. J., Perez-Terzic, C., Jin, F., Pitel, K. S., Niederlander, N. J., Jeganathan, K., Yamada, S., Reyes, S., Rowe, L., Hiddinga, H. J., Eberhardt, N. L., Terzic, A. and van Deursen, J. M. (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat. Cell Biol. 10, 825-836. https://doi.org/10.1038/ncb1744
  5. Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., Kirkland, J. L. and van Deursen, J. M. (2011) Clearance of p16Ink4a-positive senescent cells delays ageingassociated disorders. Nature 479, 232-236. https://doi.org/10.1038/nature10600
  6. Bang, M., Gonzales, E. L., Shin, C. Y. and Kwon, K. J. (2021) Late passage cultivation induces aged astrocyte phenotypes in rat primary cultured cells. Biomol. Ther. (Seoul) 29, 144-153. https://doi.org/10.4062/biomolther.2020.175
  7. Bang, M., Kim, D. G., Gonzales, E. L., Kwon, K. J. and Shin, C. Y. (2019a) Etoposide induces mitochondrial dysfunction and cellular senescence in primary cultured rat astrocytes. Biomol. Ther. (Seoul) 27, 530-539. https://doi.org/10.4062/biomolther.2019.151
  8. Bang, M., Ryu, O., Kim, D. G., Mabunga, D. F., Cho, K. S., Kim, Y., Han, S. H., Kwon, K. J. and Shin, C. Y. (2019b) Tenovin-1 induces senescence and decreases wound-healing activity in cultured rat primary astrocytes. Biomol. Ther. (Seoul) 27, 283-289. https://doi.org/10.4062/biomolther.2018.107
  9. Burd, C. E., Sorrentino, J. A., Clark, K. S., Darr, D. B., Krishnamurthy, J., Deal, A. M., Bardeesy, N., Castrillon, D. H., Beach, D. H. and Sharpless, N. E. (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152, 340-351. https://doi.org/10.1016/j.cell.2012.12.010
  10. Burda, J. E., Bernstein, A. M. and Sofroniew, M. V. (2016) Astrocyte roles in traumatic brain injury. Exp. Neurol. 275 Pt 3, 305-315. https://doi.org/10.1016/j.expneurol.2015.03.020
  11. Campisi, J., Kapahi, P., Lithgow, G. J., Melov, S., Newman, J. C. and Verdin, E. (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183-192. https://doi.org/10.1038/s41586-019-1365-2
  12. Chen, Y. F., Chen, L. H., Yeh, Y. M., Wu, P. Y., Chen, Y. F., Chang, L. Y., Chang, J. Y. and Shen, M. R. (2017) Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy. Sci. Rep. 7, 45366. https://doi.org/10.1038/srep45366
  13. Chung, W. S., Allen, N. J. and Eroglu, C. (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 7, a020370. https://doi.org/10.1101/cshperspect.a020370
  14. Coppe, J. P., Desprez, P. Y., Krtolica, A. and Campisi, J. (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
  15. Cuollo, L., Antonangeli, F., Santoni, A. and Soriani, A. (2020) The Senescence-Associated Secretory Phenotype (SASP) in the challenging future of cancer therapy and age-related diseases. Biology (Basel) 9, 485. https://doi.org/10.3390/biology9120485
  16. Czekay, R. P., Wilkins-Port, C. E., Higgins, S. P., Freytag, J., Overstreet, J. M., Klein, R. M., Higgins, C. E., Samarakoon, R. and Higgins, P. J. (2011) PAI-1: an integrator of cell signaling and migration. Int. J. Cell Biol. 2011, 562481. https://doi.org/10.1155/2011/562481
  17. Davalos, A. R., Coppe, J. P., Campisi, J. and Desprez, P. Y. (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 29, 273-283. https://doi.org/10.1007/s10555-010-9220-9
  18. De Cecco, M., Jeyapalan, J., Zhao, X., Tamamori-Adachi, M. and Sedivy, J. M. (2011) Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay. Aging 3, 955-967. https://doi.org/10.18632/aging.100372
  19. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M. and Campisi, J. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  20. Dossi, E., Vasile, F. and Rouach, N. (2018) Human astrocytes in the diseased brain. Brain Res. Bull 136, 139-156. https://doi.org/10.1016/j.brainresbull.2017.02.001
  21. Elkhattouti, A., Hassan, M. and Gomez, C. R. (2015) Stromal fibroblast in age-related cancer: role in tumorigenesis and potential as novel therapeutic target. Front. Oncol. 5, 158. https://doi.org/10.3389/fonc.2015.00158
  22. Elzi, D. J., Lai, Y., Song, M., Hakala, K., Weintraub, S. T. and Shiio, Y. (2012) Plasminogen activator inhibitor 1--insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence. Proc. Natl. Acad. Sci. U. S. A. 109, 12052-12057. https://doi.org/10.1073/pnas.1120437109
  23. Fiacco, T. A., Agulhon, C. and McCarthy, K. D. (2009) Sorting out astrocyte physiology from pharmacology. Annu. Rev. Pharmacol. Toxicol. 49, 151-174. https://doi.org/10.1146/annurev.pharmtox.011008.145602
  24. Freeman, S. H., Kandel, R., Cruz, L., Rozkalne, A., Newell, K., Frosch, M. P., Hedley-Whyte, E. T., Locascio, J. J., Lipsitz, L. A. and Hyman, B. T. (2008) Preservation of neuronal number despite agerelated cortical brain atrophy in elderly subjects without Alzheimer disease. J. Neuropathol. Exp. Neurol. 67, 1205-1212. https://doi.org/10.1097/NEN.0b013e31818fc72f
  25. Hall, B. M., Balan, V., Gleiberman, A. S., Strom, E., Krasnov, P., Virtuoso, L. P., Rydkina, E., Vujcic, S., Balan, K., Gitlin, I., Leonova, K., Polinsky, A., Chernova, O. B. and Gudkov, A. V. (2016) Aging of mice is associated with p16(Ink4a)- and beta-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8, 1294-1315. https://doi.org/10.18632/aging.100991
  26. Heir, R. and Stellwagen, D. (2020) TNF-mediated homeostatic synaptic plasticity: from in vitro to in vivo models. Front. Cell. Neurosci. 14, 565841. https://doi.org/10.3389/fncel.2020.565841
  27. Kim, M., Jung, K., Kim, I. S., Lee, I. S., Ko, Y., Shin, J. E. and Park, K. I. (2018a) TNF-alpha induces human neural progenitor cell survival after oxygen-glucose deprivation by activating the NF-kappaB pathway. Exp. Mol. Med. 50, 1-14. https://doi.org/10.1038/s12276-018-0033-1
  28. Kim, S. J., Mehta, H. H., Wan, J., Kuehnemann, C., Chen, J., Hu, J. F., Hoffman, A. R. and Cohen, P. (2018b) Mitochondrial peptides modulate mitochondrial function during cellular senescence. Aging 10, 1239-1256. https://doi.org/10.18632/aging.101463
  29. Ko, H. M., Joo, S. H., Lee, S. H., Kim, H. J., Lee, S. H., Cheong, J. H., Ryu, J. H., Kim, J. M., Koo, B. N. and Shin, C. Y. (2015) Propofol treatment modulates neurite extension regulated by immunologically challenged rat primary astrocytes: a possible role of PAI-1. Arch. Pharm. Res. 38, 556-565. https://doi.org/10.1007/s12272-014-0442-1
  30. Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., Lerner, J., Brunet, J. P., Subramanian, A., Ross, K. N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S. A., Haggarty, S. J., Clemons, P. A., Wei, R., Carr, S. A., Lander, E. S. and Golub, T. R. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929-1935. https://doi.org/10.1126/science.1132939
  31. Lee, S., Kim, S., Kang, H. Y., Lim, H. R., Kwon, Y., Jo, M., Jeon, Y. M., Kim, S. R., Kim, K., Ha, C. M., Lee, S. and Kim, H. J. (2020) The overexpression of TDP-43 in astrocytes causes neurodegeneration via a PTP1B-mediated inflammatory response. J. Neuroinflammation 17, 299. https://doi.org/10.1186/s12974-020-01963-6
  32. Lee, S. H., Ko, H. M., Kwon, K. J., Lee, J., Han, S. H., Han, D. W., Cheong, J. H., Ryu, J. H. and Shin, C. Y. (2014) tPA regulates neurite outgrowth by phosphorylation of LRP5/6 in neural progenitor cells. Mol. Neurobiol. 49, 199-215. https://doi.org/10.1007/s12035-013-8511-x
  33. Liu, G. Y. and Sabatini, D. M. (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183-203. https://doi.org/10.1038/s41580-019-0199-y
  34. Marchetti, P., Fovez, Q., Germain, N., Khamari, R. and Kluza, J. (2020) Mitochondrial spare respiratory capacity: mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J. 34, 13106-13124. https://doi.org/10.1096/fj.202000767r
  35. Messenger, A. G. and Rundegren, J. (2004) Minoxidil: mechanisms of action on hair growth. Br. J. Dermatol. 150, 186-194. https://doi.org/10.1111/j.1365-2133.2004.05785.x
  36. Michaud, M., Balardy, L., Moulis, G., Gaudin, C., Peyrot, C., Vellas, B., Cesari, M. and Nourhashemi, F. (2013) Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 14, 877-882. https://doi.org/10.1016/j.jamda.2013.05.009
  37. Molofsky, A. V., Slutsky, S. G., Joseph, N. M., He, S., Pardal, R., Krishnamurthy, J., Sharpless, N. E. and Morrison, S. J. (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448-452. https://doi.org/10.1038/nature05091
  38. Nagai, N., Suzuki, Y., Van Hoef, B., Lijnen, H. R. and Collen, D. (2005) Effects of plasminogen activator inhibitor-1 on ischemic brain injury in permanent and thrombotic middle cerebral artery occlusion models in mice. J. Thromb. Haemost. 3, 1379-1384. https://doi.org/10.1111/j.1538-7836.2005.01466.x
  39. Palmer, A. K., Tchkonia, T., LeBrasseur, N. K., Chini, E. N., Xu, M. and Kirkland, J. L. (2015) Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64, 2289-2298. https://doi.org/10.2337/db14-1820
  40. Rana, T., Jiang, C., Liu, G., Miyata, T., Antony, V., Thannickal, V. J. and Liu, R. M. (2020) PAI-1 regulation of TGF-beta1-induced alveolar type II cell senescence, SASP secretion, and SASP-mediated activation of alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 62, 319-330. https://doi.org/10.1165/rcmb.2019-0071oc
  41. Sanders, D. A., Fiddes, I., Thompson, D. M., Philpott, M. P., Westgate, G. E. and Kealey, T. (1996) In the absence of streptomycin, minoxidil potentiates the mitogenic effects of fetal calf serum, insulinlike growth factor 1, and platelet-derived growth factor on NIH 3T3 fibroblasts in a K+ channel-dependent fashion. J. Invest. Dermatol. 107, 229-234. https://doi.org/10.1111/1523-1747.ep12329697
  42. Seo, A. Y., Joseph, A. M., Dutta, D., Hwang, J. C., Aris, J. P. and Leeuwenburgh, C. (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J. Cell Sci. 123, 2533-2542. https://doi.org/10.1242/jcs.070490
  43. Siracusa, R., Fusco, R. and Cuzzocrea, S. (2019) Astrocytes: role and functions in brain pathologies. Front. Pharmacol. 10, 1114. https://doi.org/10.3389/fphar.2019.01114
  44. Son, J. M., Sarsour, E. H., Kakkerla Balaraju, A., Fussell, J., Kalen, A. L., Wagner, B. A., Buettner, G. R. and Goswami, P. C. (2017) Mitofusin 1 and optic atrophy 1 shift metabolism to mitochondrial respiration during aging. Aging Cell 16, 1136-1145. https://doi.org/10.1111/acel.12649
  45. Srivastava, S. (2017) The mitochondrial basis of aging and age-related disorders. Genes 8, 398. https://doi.org/10.3390/genes8120398
  46. Sugrue, M. M. and Tatton, W. G. (2001) Mitochondrial membrane potential in aging cells. Biol. Signals Recept. 10, 176-188.  https://doi.org/10.1159/000046886
  47. Valentijn, F. A., Falke, L. L., Nguyen, T. Q. and Goldschmeding, R. (2018) Cellular senescence in the aging and diseased kidney. J. Cell Commun. Signal. 12, 69-82. https://doi.org/10.1007/s12079-017-0434-2
  48. Xin, H., Li, Y., Shen, L. H., Liu, X., Wang, X., Zhang, J., PourabdollahNejad, D. S., Zhang, C., Zhang, L., Jiang, H., Zhang, Z. G. and Chopp, M. (2010) Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One 5, e9027. https://doi.org/10.1371/journal.pone.0009027
  49. Yoon, K. B., Park, K. R., Kim, S. Y. and Han, S. Y. (2016) Induction of nuclear enlargement and senescence by sirtuin inhibitors in glioblastoma cells. Immune Netw. 16, 183-188. https://doi.org/10.4110/in.2016.16.3.183
  50. Yu, P., Venkat, P., Chopp, M., Zacharek, A., Shen, Y., Liang, L., Landschoot-Ward, J., Liu, Z., Jiang, R. and Chen, J. (2019) Deficiency of tPA exacerbates white matter damage, neuroinflammation, glymphatic dysfunction and cognitive dysfunction in aging mice. Aging Dis. 10, 770-783. https://doi.org/10.14336/AD.2018.0816
  51. Zhang, H., Zheng, Q., Guo, T., Zhang, S., Zheng, S., Wang, R., Deng, Q., Yang, G., Zhang, S., Tang, L., Qi, Q., Zhu, L., Zhang, X. F., Luo, H., Zhang, X., Sun, H., Gao, Y., Zhang, H., Zhou, Y., Han, A., Zhang, C. S., Xu, H. and Wang, X. (2022) Metabolic reprogramming in astrocytes results in neuronal dysfunction in intellectual disability. Mol. Psychiatry doi: 10.1038/s41380-022-01521-x [Online ahead of print].
  52. Zhang, L., Berta, T., Xu, Z. Z., Liu, T., Park, J. Y. and Ji, R. R. (2011) TNF-alpha contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain 152, 419-427. https://doi.org/10.1016/j.pain.2010.11.014
  53. Zhang, M., Serna-Salas, S., Damba, T., Borghesan, M., Demaria, M. and Moshage, H. (2021) Hepatic stellate cell senescence in liver fibrosis: characteristics, mechanisms and perspectives. Mech. Ageing Dev. 199, 111572. https://doi.org/10.1016/j.mad.2021.111572
  54. Zhou, Y., Al-Saaidi, R. A., Fernandez-Guerra, P., Freude, K. K., Olsen, R. K., Jensen, U. B., Gregersen, N., Hyttel, P., Bolund, L., Aagaard, L., Bross, P. and Luo, Y. (2017) Mitochondrial spare respiratory capacity is negatively correlated with nuclear reprogramming efficiency. Stem Cells Dev. 26, 166-176. https://doi.org/10.1089/scd.2016.0162
  55. Zou, Y., Zhang, N., Ellerby, L. M., Davalos, A. R., Zeng, X., Campisi, J. and Desprez, P. Y. (2012) Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation. Biochem. Biophys. Res. Commun. 426, 100-105. https://doi.org/10.1016/j.bbrc.2012.08.043