• Title/Summary/Keyword: Ag substrate

Search Result 483, Processing Time 0.025 seconds

Growth and optical properties for $AgGaS_2$ epilayer by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$ 박막성장과 광학적특성)

  • Youn, Seuk-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.56-59
    • /
    • 2004
  • The stochiometric composition of $AgGaS_2$ polycrystal source materials for the $AgGaS_2/GaAs$ epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal $AgGaS_2$ has tetragonal structure of which lattice constant $a_0$ and $c_0$ were 5.756 ${\AA}$ and 10.305 ${\AA}$, respectively. $AgGaS_2/GaAs$ epilayer was deposited on throughly etched GaAs (100) substrate from mixed crystal $AgGaS_2$ by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively. The crystallinity of the grown $AgGaS_2/GaAs$ epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2/GaAs$ epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by ${\alpha}=8.695{\times}10^{-4}eV/K$, and $\beta$=332 K. From the photocurrent spectra by illumination of polarized light of the $AgGaS_2/GaAs$ epilayer, we have found that crystal field splitting $\Delta$ Cr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

Study on Properties of Ag and PbO Doped $YBa_2Cu_3O_x$

  • Son, Dea-Wha;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.593-596
    • /
    • 2003
  • A proposed way to prepare $YBa_2Cu_3O_y$ wires or tapes is that Ag is used as substrate and melting point of $YBa_2Cu_3O_y$ is decreased to lower than the melting point of silver ($961\;^{\circ}C$). Therefore after the deposition of $YBa_2Cu_3O_y$ film on Ag substrate, the heat treatment can be carried out below the Ag melting point. Silver (Ag) and Lead oxide(PbO) were selected to be additives for $YBa_2Cu_3O_y$. Different Ag and PbO contents were added in $YBa_2Cu_3O_y$, the melting points of which were measured by DTA. In order to guarantee that the superconductivity of $YBa_2Cu_3O_y$ was not reduced after Ag and PbO added into $YBa_2Cu_3O_y$, their superconductivities were measured. It is proved that as additives, both Ag and PbO can reduce the melting point of $YBa_2Cu_3O_y$. For Ag doped $YBa_2Cu_3O_y$, $T_c$ is about 93K and ${\Delta}Tc$ is $2{\sim}3K$. For PbO doped $YBa_2Cu_3O_y$, $T_c$ is $88K{\sim}92K$ and ${\Delta}T_c$ is $11{\sim}12K$. When 10 wt% of Ag and 10 wt% PbO were added in $YBa_2Cu_3O_y$, the melting point of the mixture of $YBa_2Cu_3O_y$ (80 wt%), Ag (10 wt%) and PbO (l0 wt%) is $943^{\circ}C$. The transition temperatures ($T_c$) of the sample is 91.8 K.

  • PDF

A Study on the Mechanical Properties of Ag-X(X=Cu,Ni,C) Alloys Prepared by the Vacuum-deposition Technique (진공증착법으로 제작한 Ag-X(X=Cu,Ni,C) 합금의 기계적 성질에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.243-250
    • /
    • 2011
  • When alloys are vacuum-deposited on cooled substrates, super-rapidly cooled alloy films in the unequilibrium state can be obtained. As an application of this method, Ag-Cu, Ag-Ni and Ag-C alloys were successfully produced, and their mechanical properties with tempering temperature were investigated. The following results were obtained : (1) In case of Ag-Cu alloys, the solid solution was hardened by tempering at $150^{\circ}C$. The hardening is considered to occur when the solid solution begins to decompose into ${\alpha}$ and ${\beta}$ phases. The Knoop hardness number of a 40 at.%Ag-Cu alloy film deposited on a cooled glass substrate was 390 $kg/mm^2$. The as-deposited films were generally very hard but fractured under stresses below their elastic limits. (2) In case of Ag-Ni and Ag-C alloys, after the tempering of 4 at.%Ni-Ag alloy at $400^{\circ}C$ and of 1 and 2 at.%C-Ag alloys at $200^{\circ}C$, they were hardened by the precipitation of fine nickel and carbon particles. The linear relationship between proof stress vs. $(grain\;diameter)^{-l/2}$ for bulk silver polycrystals can be applied to vacuum-deposited films up to about 0.1 ${\mu}m$ grain diameter, but the proof stress of ultra-fine grained silver with grain diameters of less than 0.1 ${\mu}m$ was smaller than the value expected from the Petch's relation.

Influence of Ag thickness on properties of AZO/Ag/AZO Multi-layer Thin Films (AZO/Ag/AZO 다층박막의 Ag두께에 따른 특성 연구)

  • Yeon, Je ho;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.27-31
    • /
    • 2017
  • AZO/Ag/AZO multi-layer films deposited on glass substrate by RF magnetron sputtering and thermal evaporator have a much better electrical properties than Al-doped ZnO thin films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. The optimum thickness of Ag layers was determined to be $90{\AA}$ for high optical transmittance and good electrical conductivity. The Ag layers thickness $90{\AA}$ is an optical transmittance greater than 80% of visible light and the obtained multilayer thin film with the low resistivity of $8.05{\times}10-3{\Omega}cm$ and the low sheet resistance $5.331{\Omega}/sq$. Applying to TCO and Solar electrode will improve efficiency.

  • PDF

Growth and optic characteristics of AgGaS$_2$/GaAs single crystal thin film by hot wall epitaxy (HWE 방법에 의한 AgGaS$_2$/GaAs 단결정 박막 성장과 광학적 특성)

  • 이상열;홍광준;정준우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.281-287
    • /
    • 2002
  • The stochiometric composition of AgGaS$_2$ polycrystal source materials for the AgGaS$_2$/GaAs epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal AgGaS$_2$ has tetragonal structure of which lattice constant a$\sub$0/ and c$\sub$0/ were 5.756 ${\AA}$ and 10.305 ${\AA}$, respectively. AgGaS$_2$/GaAs epilayer was deposited on throughly etched GaAs(100) substrate from mixed crystal AgGaS$_2$ by the Hot Wall Epitaxy (100) system. The source and substrate temperature were 590$^{\circ}C$ and 440$^{\circ}C$ respectively. The crystallinity of the grown AgGaS$_2$/GaAs epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for AgGaS$_2$/GaAs epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by ${\alpha}$ : 8.695${\times}$10$\^$-4/ eV/K, and ${\beta}$ = 332 K. From the photocurrent spectra by illumination of polarized light of the AgGaS$_2$/GaAs epilayer, we have found that crystal field splitting ΔCr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pain are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

Crystal Growth Sensor Development of II-VI Compound Semiconductor : CdS (II-VI족 화합물 반도체의 결정성장 및 센서 개발에 관한 연구)

  • D.I. Yang;Y.J. Shin;S.Y. Lim;Y.D. Choi
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.126-133
    • /
    • 1992
  • This study deals with the crystal growth and the optical characteristics of CdS thin films activatedby silver. CdS:Ag thin films were deposited by using an electron beam evaporation(EBE) technique in vacuumof 1.5X 10-'torr, voltage of 4 kV, current of 2.5 mA and substrate temperature of 250$^{\circ}$C CdS:Ag photoconductivefilms prepared by EBE method show high photoconductivity after annealing at about 550"c for 0.5 h in air andAr gas.The grain size of CdS:Ag thin films annealed in Ar atmosphere (1 atm) was grown over 1 ym and the thicknessof the films is 4-5 pm. The analysis of X-ray diffraction patterns shows that the crystal structures are hexagonal.The diffraction line by (00.2) plane can only be observed, indicating that c-axis of hexagonal grows preferentiallyperpendicular to the substrate. The profiles of photoluminescence spectra of CdS:Ag films show Gaussian typecurves at room temperature, the maximum peak spectral sensitivity of CdS:Ag is located at the wavelength of520 nm.We annealed CdS:Ag thin films in air and Ar vapor in order to make the CdS photoconductors having theintensive photocurrent, the broad distribution of the photocurrent spectrum and the large value of the ratioof the photocurrent (pc) to the dark current(dc). We found that CdS:Ag thin films annealed in air atmospherewas the best one.air atmosphere was the best one.

  • PDF

Growth and effect of thermal annealing for $AgGaS_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaS_2$ 단결정 박막 성장과 열처리 효과)

  • Moon Jongdae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for AgGaS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, AgGaS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were 590℃ and 440℃, respectively. The temperature dependence of the energy band gap of the AgGaS₂ obtained from the absorption spectra was well described by the Varshni's relation, E/sub g/(T) = 2.7284 eV - (8.695×10/sup -4/ eV/K)T²/(T + 332 K). After the as-grown AgGaS₂ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of AgGaS₂ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of V/sub Ag/, V/sub s/, Ag/sub int/, and S/sub int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted AgGaS₂ single crystal thin films to an optical n-type. Also, we confirmed that Ga in AgGaS₂/GaAs crystal thin films did not form the native defects because Ga in AgGaS₂ single crystal thin films existed in the form of stable bonds.

Growth and effect of thermal annealing for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Baek, Seung-Nam;Hong, Kwang-Joon;Kim, Jang-Bok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.189-197
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $AgGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy(HWE) system. The source and substrate temperatures were $630^{\circ}C\;and\;420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501eV-(8.79x10^{-4}eV/K)T^2(T+250K)$. After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence (PL) at 10K. The native defects of $V_{Ag},\;V_{Se},\;Ag_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

Study on Point Defect for $AgGaS_2$ Single Crystal Thin film Obtained by Photoluminescience Measurement Method (광발광 측정법에 의한 $AgGaS_2$ 단결정 박막의 점결함 연구)

  • Hong, Kwang-Joon;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.117-126
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for $AgGaS_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaS_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $590^{\circ}C\;and\;440^{\circ}C$, respectively The temperature dependence of the energy band gap of the $AgGaS_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7284 eV-(8.695{\times}10^{-4}eV/K)T^2/T(T+332K)$. After the as-grown $AgGaS_2$, single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of $AgGaS_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag},\;V_s,\;Ag_{int},\;and\;S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaS_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $AgGaS_2$ crystal thin films did not form the native defects because Ga in $AgGaS_2$ single crystal thin films existed in the form of stable bonds.

Effect of Frit Content in Ag Paste on the Discoloration of Transparent Dielectric in PDP

  • Jeon, Jae-Sam;Kim, Hyung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1248-1251
    • /
    • 2005
  • In PDP, a transparent dielectric is formed on a front glass substrate so as to cover bus electrodes (Ag). During the fabrication process, sometimes, a transparent dielectric reacts with bus (Ag) electrode in the range of $560-600^{\circ}C$, and the reaction gives the dielectric its yellow coloration, what is called "yellowing phenomena". In this paper, we investigated the reaction between bus electrode and transparent dielectric covered with different frit content in Ag paste.

  • PDF