Browse > Article

Growth and effect of thermal annealing for $AgGaS_2$ single crystal thin film by hot wall epitaxy  

Moon Jongdae (Department of Photoelectronic, Dongshin University)
Abstract
A stoichiometric mixture of evaporating materials for AgGaS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, AgGaS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were 590℃ and 440℃, respectively. The temperature dependence of the energy band gap of the AgGaS₂ obtained from the absorption spectra was well described by the Varshni's relation, E/sub g/(T) = 2.7284 eV - (8.695×10/sup -4/ eV/K)T²/(T + 332 K). After the as-grown AgGaS₂ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of AgGaS₂ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of V/sub Ag/, V/sub s/, Ag/sub int/, and S/sub int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted AgGaS₂ single crystal thin films to an optical n-type. Also, we confirmed that Ga in AgGaS₂/GaAs crystal thin films did not form the native defects because Ga in AgGaS₂ single crystal thin films existed in the form of stable bonds.
Keywords
Point defect; Hot wall epitaxy; Single crystal thin film; Thermal annealing; Photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Parkes and M.J. Hampshire, 'Violet luminescience emitted from $AgGaS_2$ films deposited on Si substrate by rf magnetron sputtering', J. Appl. Cryst. 6 (1973) 414   DOI
2 H. Fujita, 'Electron radition damage in cadium-selenide crystal at liquid-helium temperrature', J. Phys. Soc. Jpn. 20 (1965) 109
3 V.P. Varshni, 'Far-infrared optical absorption of $Fe^{2+}$ in ZnSe', Physica 34 (1967) 149
4 J.I. Pankove, Optical Process in Semiconductors (Dover, Publications, New York, 1971) p. 36
5 B. Gudden and R. Pohl, Z., 'Fabrication of semiconducting $AgGaS_2$ nanobelts using a halide source and their photoluminescience properties', Physik 3 (1920) 98   DOI
6 J.C. Bergman and S. Kurtz, 'X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of $AgGaS_2$ photoelectrodes', Mat. Sci. Eng. 5 (1970) 235
7 I. Shih, A. Vahid Shahidi and C.H. Champness, 'Transport properties of $AgGaS_2$ single crystal', J. Appl. Phys. 56 (1984) 421   DOI   ScienceOn
8 K.K. Muravyeva, I.P.K. Kinm, V.B. Aleakvsky and I.N. Anikin, 'Growth by directional freezing of $AgGaS_2$ and diffused homojunctions in bulk material', Thin Solids Films 10 (1972) 355   DOI   ScienceOn
9 L.L. Kazmerski, P.J. Ireland, F.R. White and R.B. Cooper, 13th. IEEE Photovoltaic Specialistic Conf. Record (IEEE, Princeton 1978) p. 184
10 Elizabeth A. Wood, Crystal Orientation manual, Columbia university press (1963)
11 H. Matthes, R. Viehman and N. Marschell, 'The characterization of $AgGaS_2$ crystal grown by the sublimation method', Appl. Phys. Lett. 26 (1975) 237   DOI
12 D.C. Hanna, V.V. Rampel and R.C. Smith, 'Saturation Photoconductivity in $AgGaS_2$', Opt. Commun. 8 (1973) 151   DOI   ScienceOn
13 S. Wagner, J.L. Shay, P. Migliorato and H.M. Kasper, 'Study of the band edge in $AgGaS_2$ by photovoltaic effect', Appl. Phys. Lett. 25 (1974) 434   DOI
14 P. Migliorato, J.L. Shay and H.M. Kasper, 'Heterojunction formation in PbS/$AgGaS_2$ ternary solar cells', J. Elec. Mate. 4 (1975) 209   DOI   ScienceOn
15 J.E. Genthe and R.E. Aldrich, 'Doped $AgGaS_2$ thin films as anode materials for organic light emitting diodes', Thin Solid Films 8 (1971) 149   DOI   ScienceOn
16 H.A. Chedzey, D.J. Marshall, H.J. Pakfitt and D.S. Robertson, 'The band structure of $AgGaS_2$ calculated by the pseudopotential method', J. Appl. Phys. 4 (1971) 1320
17 A. Smith, 'Growth by directional freezing of $AgGaS_2$ and diffused homojunctions in bulk material', J. Vac. Sc. Technol. 15 (1987) 353
18 B. Tell and H.M. Kasper, 'The optical properties of $AgGaS_2$ crystal grown by the sublimation method', Phys. Rev. B6. (1972) 3008
19 P.W. Yu and Y.S. Park, 'The optical properties of $AgGaS_2$ thin films', J. Appl. Phys. 45 (1974) 825
20 J. Arias, M. Zandman, J.G. Pasko, S.H. Shin, L.D. Bubulac, R.E. Dewanes and W.E. Tennart, 'Optical absorption of co-doped $AgGaS_2$', J. Appl. Phys. 69 (1991) 2143
21 J.T. Calow, D.L. Kirr and S.J.T. Owen, 'Saturation Photoconductivity in $AgGaS_2$', Thin Soild Films 9 (1970) 409
22 B. Tell and H.M. Kasper, 'Influence of the annealing conductions on the properties of $AgGaS_2$ thin films', Phys. B4 (1971) 4455
23 R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960) p. 130
24 P.W. Yu, J. Manthuruthil and Y.S. Park, 'Crystal structrue and two-phonon absorption in $AgGaS_2$', J. Appl. Phys. 45 (1974) 3694
25 I.W.F. Russel, B.N. Baronand and R.E. Rocheleau, 'Photoluminescience and phconductivity measurements on $AgGaS_2$', J. Vac. Sci. Technol. B2(4) (1984) 840
26 D.G.D. Boy, H.M. Kasper and McFee, J.H., IEEE, 'Luminescence and impurity states in $AgGaS_2$', J. Quantum Electro QE7, 563 (1971)
27 B. Guddenand R. Pohl, Z. 'Temperature dependence of excitionic luminescience from nanocrystalline $AgGaS_2$ films', Physik 5 (1991) 176   DOI
28 P. Korczak and C.B. Staff, 'The optical properties of $AgGaS_2$ single crystal', J. Crystal Growth 24 125 (1974) 386   DOI   ScienceOn
29 B.D. Cullity, Elements of X-ray Diffractions (Addson-Welsey, 1985) Chap. 11
30 R.J. Seymour and F. Zemike, 'Growth by directional freezing of $AgGaS_2$ and diffused homojunctions in bulk material', Appl. Phys. Lett. 29 (1976) 705   DOI
31 W. Jantz and P. Koidi, 'Optical absorption of Co-doped $AgGaS_2$', Appl. Phys. Lett. 31 (1977) 99