Study on Properties of Ag and PbO Doped YBa₂Cu₃O_x

Soh Deawha, Fan Zhanguo*

Dept. of Electronic Engineering, Myongji University, Korea School of Materials and Metallurgy, Northeastern University, China

Abstract

A proposed way to prepare YBa₂Cu₃O_y wires or tapes is that Ag is used as substrate and melting point of YBa₂Cu₃O_y is decreased to lower than the melting point of silver (961°C). Therefore after the deposition of YBa₂Cu₃O_y film on Ag substrate, the heat treatment can be carried out below the Ag melting point. Silver (Ag) and Lead oxide(PbO) were selected to be additives for YBa₂Cu₃O_y. Different Ag and PbO contents were added in YBa₂Cu₃O_y, the melting points of which were measured by DTA. In order to guarantee that the superconductivity of YBa₂Cu₃O_y was not reduced after Ag and PbO added into YBa₂Cu₃O_y, their superconductivities were measured. It is proved that as additives, both Ag and PbO can reduce the melting point of YBa₂Cu₃O_y. For Ag doped YBa₂Cu₃O_y, T_c is about 93K and Δ Tc is 2~3K. For PbO doped YBa₂Cu₃O_y, T_c is 88K~92K and Δ Tc is 11~12K. When 10 wt% of Ag and 10 wt % PbO were added in YBa₂Cu₃O_y, the melting point of the mixture of YBa₂Cu₃O_y (80 wt%), Ag (10 wt%) and PbO (10wt%) is 943°C. The transition temperatures (T_c) of the sample is 91.8 K.

Key Words: YBa₂Cu₃O_x, additives, melting point, superconductivity

1. Introduction

Because Ag is not oxidized in air and as an impurity does not reduce superconductivities of YBa₂Cu₃O_x, Ag still is a desirable substrate material for YBa₂Cu₃O_x tape [1-4]. The fabrication of Ag-alloys with high melting points have been tested, the attempt did not succeed because the solubility of alloying elements Ni and Cr in Ag is too small to form an alloy [5], and the noble metals Pt, Pd are not suitable for the mass application due to their high price. Therefore the another way for making YBa₂Cu₃O_v tape is studied, in which pure silver is used as substrate while the melting point of YBa₂Cu₃O_x is reduced by additives. The melting point of YBa₂Cu₃O_x superconductor must be reduced from 1010°C to lower than the melting point of Ag (961°C).

The first of all is to find the agent (element or compound) which could reduce the melting

point of YBa₂Cu₃O_y when the agent was added in. The substances which would damage the superconductivities of YBa₂Cu₃O_v could not be selected as additives although they could reduce the melting point of YBa2Cu3Oy. Here Ag and PbO were chosen as the additives for reducing the melting point of YBa2Cu3Ov. Ag as the additive was studied [6,7] in order to eliminated micro-cracks in textured YBa₂Cu₃O_v superconductors. The idea of chosen PbO was from the synthesis of (BiPb)₂Sr₂Ca₂Cu₃O_y in which Pb substituted for some Bi sites and could benefit to stabilize of superconductive phase. The Differential Thermal Analysis (DTA) was used for the measurement of the melting points of solid solution of YBa₂Cu₃O_y and Ag (or PbO). The transition temperatures(T_c) were measured by the standard four line method.

2. Experiments

The YBa₂Cu₃O_y powder was prepared by solid state reaction and powder with particle size of less than 40 μ m was used in the experiment. The samples of YBa₂Cu₃O_y with different Ag, PbO were prepared, and the contents of additives were shown in table 1.

Table 1. Superconductivities of YBa₂Cu₃O_y doped Ag or PbO.

Samples	Contents of impurities (wt%)	Critical temperature (T _c , K)	Transition width (△T _c , K)
YBa ₂ Cu ₃ O _y		92.0	3
YBaCuO with	Ag 5	93.0	3
	Ag 10	93.5	2
	Ag 15	93.0	2
YBaCuO with	PbO 5	90.3	11.2
	РьО 10	92.6	11.5
	PbO 15	91.0	11.2
	PbO 20	88.2	11.6

Table 2. Superconductivities of YBa₂Cu₃O_y double doped Ag and PbO.

Samples	Impurity contents(wt%)	Critical temperature (T _c , K)	Transition width (△T _c , K)
1	5 Ag + 5 PbO	88.0	14.0
2	5 Ag + 10 PbO	90.0	12.6
3	5 Ag + 15 PbO	91.8	11.6
4	5 Ag + 20 PbO	91.8	11.6
5	10 Ag + 5 PbO	91.2	7.5
6	10 Ag + 10 PbO	91.8	5.0
7	10 Ag + 15 PbO	92.0	5.0
8	10 Ag + 20 PbO	91.2	2.0
9	15 Ag + 5 PbO	90.5	12.0
10	15 Ag + 10 PbO	88.0	12.0
11	15 Ag + 15 PbO	89.8	10.0
12	15 Ag + 20 PbO	88.8	12.0

In reference [6], it was known that if Ag content was over 15 wt% when the sample was melted Ag would separated out from YBa₂Cu₃O_y, because the saturated solubility of Ag in YBa₂Cu₃O_y was about 15 wt%. Therefore the maximum content of Ag added in YBa₂Cu₃O_y was 15 wt%. The compositions of double doped (Ag + PbO) YBa₂Cu₃O_y are list in table 2.

The mixtures of $YBa_2Cu_3O_y$ and additives were solidified after grinding and pressing at 900°C in air. One gram of each sample was cut for the measurement of melting point by DTA, and the left samples used for the measurements of transition temperatures (T_c) .

3. Results and Discussions

3.1 The melting points of YBa₂Cu₃O_y with additives

The melting points of YBa₂Cu₃O_y samples with different Ag or PbO contents were shown in figure 1.

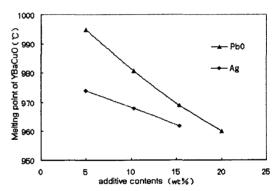


Fig. 1. The melting points of YBa₂Cu₃O_y with different additive contents.

From the figures 1, it is known that both additives, Ag and PbO additives can reduce the melting point of YBa₂Cu₃O_y. The melting point of YBa₂Cu₃O_y with 10 wt% Ag can reach 961°C. and that of YBa₂Cu₃O_y with 20 wt% PbO can reach 959°C, both of which are very close to the melting point of Ag. Melting point of YBa₂Cu₃O_y with 10 wt% Ag and 10 wt% PbO (sample 6) was 943°C. It was suggested that the melting points of samples 7 - 12 in table 2 should be

measured, and even considerable results may achieved.

3.2 Critical Temperatures (T_c) of YBa₂Cu₃O_y with different additives Ag and PbO contents

In the experiment, critical temperatures (T_c) were measured by standard 4 line method in liquid nitrogen. The data in table 1 are for the samples of $YBa_2Cu_3O_y$ doped with Ag or PbO respectively. The relations of T_c and ΔT_c of $YBa_2Cu_3O_y$ with different Ag or PbO contents are presented in figure 2 and figure 3.

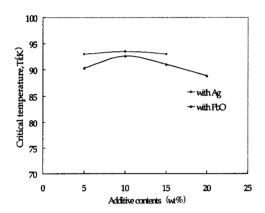


Fig. 2. T_c of $YBa_2Cu_3O_y$ with different Ag and PbO contents respectively.

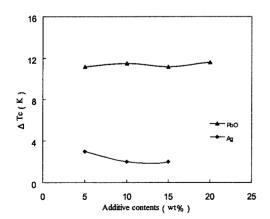


Fig. 3. ∠T_c changes with different Ag and PbO contents.

Comparing with pure YBa₂Cu₃O_y sample the

 T_c and ΔT_c of Ag doped YBa₂Cu₃O_y samples do not change obviously, which means Ag contents do not influence the superconductivities of YBa₂Cu₃O_y superconductors. For the PbO doped samples when the content of PbO is less than 15 %, T_c does not change too much, while T_c of the sample with 20 % PbO reduced to 88.2K. The ΔT_c values for all PbO doped samples increased to about 11K, which means the superconductivities of PbO doped YBa₂Cu₃O_y are not good as that of Ag doped samples.

3.3 The superconductivity of double doped YBa₂Cu₃O_y

The data in table 2 are for the samples of $YBa_2Cu_3O_y$ doped the two additives Ag and PbO at the same time.

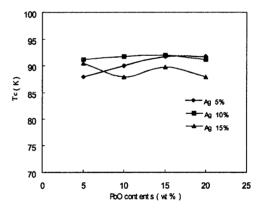


Fig. 4. T_c values of YBa₂Cu₃O_y with double additives Ag and PbO.

For double doping (Ag + PbO) YBa₂Cu₃O_y in table 2, the data of T_c and ΔT_c of 10 wt% Ag group are better than the other two groups, especially the ΔT_c data are obviously less than that of other two groups. In table 2 only the melting point of YBa₂Cu₃O_y sample with 10 wt% Ag and 10 wt% PbO was measured by DTA and its melting point was 943°C. If the samples of YBa₂Cu₃O_y with 10 wt% Ag and doped 15 wt% PbO and 20 wt% PbO were studied by DTA, their melting points would be even lower.

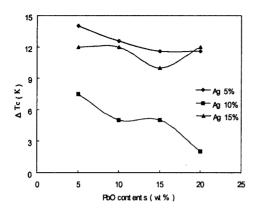


Fig. 5. ΔT_c changes with double additives Ag and PbO.

4. Conclusions

The additives of Ag and PbO are effective for the melting YBa₂Cu₃O_y reducing point of melting superconductors. The point YBa₂Cu₃O_y sample with 10 wt% Ag and 10 wt% PbO was 943°C, which may suitable for the texture growth in the heat treatment YBa₂Cu₃O_y below Ag melting point. The measurements proved that Ag additive does not decrease the superconductivity of YBa₂Cu₃O_y, while the PbO content in YBa2Cu3Ov is less than 15 wt%, the T_c value is about 90K, ΔT_c 11K. Ag and PbO could be the effective additives in YBa₂Cu₃O_v when pure Ag is used as substrate for preparation of YBa₂Cu₃O_y tapes.

Acknowledgements

This work was supported by the KISTEP grant of M6-0011-00-0043 for int'l. JRP and by the KOFST grant of 022-3-7 for Brain Pool program.

References

- [1] M. Okada, A. Okayama, T. Morimoto, et al, "Fabrication of Ag-sheathed Ba-Y-Cu Oxide superconductor Tape", Jpn. J. Appl. Phys., Vol. 27, No. 2, p. L185, 1988.
- [2] M. Fujimoto, H. Nojima, H. Shintaku, et al, "Study of Ag addition to YBa₂Cu₃O_y Film

- Prepared Using Electrophoretic Deposition", Jpn. J. Appl. Phys., Vol. 32, No. 4B, p. L576, 1993.
- [3] Z. Fan, Y. Shan, D. Soh, et al, "Study of Ag Doped YBCO Superconductor Prepared by MTG Method", Physica C, Vol. 282-287, No. 2, p. 495, 1997.
- [4] V. Plechacek, V. Landa, Z. Blazek, et al, "Properties of Y-Ba-Cu-O Superconductors with Ag Addition", Physica C, Vol. 153-155, p. 878, 1988.
- [5] Y. Tao, H. Zhao, "Interactions and Bond Parameters between Ag and Elements in Periodic Table", Noble Metals, Vol. 23, No. 2, p. 38, 2002.
- [6] Y. Shan, "The Improvement of Superconductivity of YBa₂Cu₃O_y Made by MTG" by Doctor Thesis, North-eastern University, 1996.
- [7] I. Dhingra, G. K. Padam, S. Singh, et al, "Study of Silver Addition to YBa₂Cu₃O_y Screen Printed Thick Films", J. Appl. Phys., Vol. 70, No. 3, p. 1575, 1991.