Study on Point Defect for $AgGaS_2$ Single Crystal Thin film Obtained by Photoluminescience Measurement Method

광발광 측정법에 의한 $AgGaS_2$ 단결정 박막의 점결함 연구

  • Published : 2005.04.30

Abstract

A stoichiometric mixture of evaporating materials for $AgGaS_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaS_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $590^{\circ}C\;and\;440^{\circ}C$, respectively The temperature dependence of the energy band gap of the $AgGaS_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7284 eV-(8.695{\times}10^{-4}eV/K)T^2/T(T+332K)$. After the as-grown $AgGaS_2$, single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of $AgGaS_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag},\;V_s,\;Ag_{int},\;and\;S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaS_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $AgGaS_2$ crystal thin films did not form the native defects because Ga in $AgGaS_2$ single crystal thin films existed in the form of stable bonds.

[ $AgGaS_2$ ] 단결정 박막을 수평 전기로에서 합성한 $AgGaS_2$ 다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판 (반절연성 -GaAs (100))의 온도를 각각 $590^{\circ}C,\;440^{\circ}C$로 고정하여 성장하였다. 이때 단결정 박막의 결정성은 광발광 스펙트럼과 이중결정 X-선 요동곡선 (DCRC)으로 부터 구하였다. $AgGaS_2$의 광흡수 스펙트럼으로부터 구한 온도에 의존하는 에너지 밴드갭 $E_g(T)$는 Varshni. 공식에 fitting한 결과 $E_g(T)=2.7284 eV-(8.695{\times}10^{-4}eV/K)T^2/T(T+332K)$를 잘 만족하였다. 성장된 $AgGaS_2$, 단결정 박막을 Ag, Ga, S분위기에서 각각 열처리하여 10K에서 photoluminescience(PL) spectrum을 측정하여 점 결함의 기원을 알아보았다. PL 측정으로부터 얻어진 $V_{Ag},\;V_s,\;Ag_{int}$, 그리고 $S_{int}$는 주개와 받개로 분류되어졌다. $AgGaS_2$ 단결정 박막을 Ag분위기에서 열처리하면 n형으로 변환됨을 알 수 있었다. 또한, Ca 분위기에서 열처리하면 열처리 이전의 PL스펙트럼을 보이고 있어서, $AgGaS_2$ 단결정 박막에서 Ga은 안정된 결합의 형태로 있기 때문에 자연 결함의 형성에는 관련이 없음을 알았다.

Keywords

References

  1. Appl. Phys. Lett. v.25 Study of the Band Edge in $AgGaS_2$ by Photovoltaic effect Wagner, S.;Shay, J.L.;Migliorato, P.;Kasper, H.M. https://doi.org/10.1063/1.1655537
  2. J. Appl. Phys. v.56 Transport properties of $AgGaS_2$ single crystal Shih, I.;Vahid Shahidi, A.;Champness, C.H. https://doi.org/10.1063/1.333981
  3. J. Elec. Mate. v.4 Heterojunction formation in $PbS/AgGaS_2$ ternary solar cells Migliorato, P.;Shay, J.L.;Kasper, H.M. https://doi.org/10.1007/BF02655402
  4. 13th. IEEE Photovoltaic Specialistic Conf. Record Kazmerski, L.L.;Ireland, P.J.;White, F.R.;Cooper, R.B.
  5. J. Vac. Sci. Technol. v.B2 no.4 Photoluminescience and phconductivity measurements on $AgGaS_2$ Russel, I.W.F.;Baronand, B.N.;Rocheleau, R.E.
  6. Opt. Commun. v.8 Saturation Photoconductivity in $AgGaS_2$ Hanna, D.C.;Rampel, V.V.;Smith, R.C. https://doi.org/10.1016/0030-4018(73)90160-0
  7. Appl. Phys. Lett. v.31 Optical absorption of Co-doped $AgGaS_2$ Jantz, W.;Koidi, P. https://doi.org/10.1063/1.89579
  8. Appl. Phys. Lett. v.29 Growth by directional freezing of $AgGaS_2$ and diffused homojunctions in bulk material Seymour, R.J.;Zernike, F. https://doi.org/10.1063/1.88933
  9. Mat. Sci. Eng. v.5 X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of $AgGaS_2$ photoelectrodes Bergman, J.C.;Kurtz, S. https://doi.org/10.1016/0025-5416(70)90012-1
  10. Phys. Rev. v.B6 The optical properties of $AgGaS_2$ crystal grown by the sublimation method Tell, B.;Kasper, H.M.
  11. J. Appl. Phys. v.45 The optical properties of $AgGaS_2$ thin films Yu, P.W.;Park, Y.S.
  12. Appl. Phys. Lett. v.26 The characterization of $AgGaS_2$ crystal grown by the sublimation method Matthes, H.;Viehman, R.;Marschell, N. https://doi.org/10.1063/1.88134
  13. J. Appl. Phys. v.45 Crystal structrue and two-phonon absorption in $AgGaS_2$ Yu, P.W.;Manthuruthil, J.;Park, Y.S. https://doi.org/10.1063/1.1663842
  14. J. Appl. Phys. v.4 The band structure of $AgGaS_2$ calculated by the pseudopotential method Chedzey, H.A.;Marshall, D.J.;Pakfitt, H.J.;Robertson, D.S.
  15. J. Crystal Growth v.24 no.125 The optical properties of $AgGaS_2$ single crystal Korczak, P.;Staff, C.B. https://doi.org/10.1016/0022-0248(74)90342-X
  16. J. Vac. Sc. Technol. v.15 Growth by directional freezing of $AgGaS_2$ and diffused homojunctions in bulk material Smith, A.
  17. J. Appl. Phys. v.69 optical Absorption of Co-Doped $AgGaS_2$ Arias, J.;Zandman, M.;Pasko, J.G.;Shin, S.H.;Bubulac. L.D.;Dewanes, R.E.;Tennart, W.E. https://doi.org/10.1063/1.348741
  18. Thin Solids Films v.10 Growth by directional freezing of $AgGaS_2$ and diffused homojunctions in bulk material Muravyeva, K.K.;Kinm, I.P.K.;Aleakvsky, V.B.;Anikin, I.N. https://doi.org/10.1016/0040-6090(72)90206-4
  19. Thin Soild Films v.9 Saturation Photoconductivity in $AgGaS_2$ Calow, J.T.;Kirr, D.L.;Owen, S.J.T.
  20. Thin Solid Films v.8 Doped $AgGaS_2$ thin films as anode materials for organic light emitting diodes Genthe, J.E.;Aldrich, R.E. https://doi.org/10.1016/0040-6090(71)90007-1
  21. Elements of X-ray Diffractions Cullity, B.D.
  22. J. Appl. cryst. v.6 Violet luminescience emitted from $AgGaS_2$ films deposited on Si substrate by rf magnetron sputtering Parkes, J.;Hampshire, M.J.
  23. Crystal Orientation manual wood, Elizabeth A.
  24. J. Phys. Soc., Jpn. v.20 Electron radition damage in cadium-selenide crystal at liquid-helium temperrature Fujita, H. https://doi.org/10.1143/JPSJ.20.109
  25. Physica v.34 Far-infrared optical absorption of $Fe^{2+}$ in ZnSe Varshni, V.P. https://doi.org/10.1016/0031-8914(67)90062-6
  26. J. Quantum Electro QE7 v.563-567 Luminescence and impurity states in $AgGaS_2$ Boy, G.D.;Kasper, D.H.M.;McFee, J.H.;IEEE
  27. Optical Process in Semiconductors Pankove, J.I.
  28. Physik v.3 Fabrication of semiconducting $AgGaS_2$ nanobelts using a halide source and their photoluminescience properties Gudden, B.;Pohl, Z.R. https://doi.org/10.1007/BF01330924
  29. Physik v.5 Temperature dependence of excitionic luminescience from nanocrystalline $AgGaS_2$ films Guddenand, B.;Pohl, Z.R. https://doi.org/10.1007/BF01329251
  30. Photoconductivity of Solids Bube, R.H.
  31. Phys. v.B4 Influence of the annealing conductions on the properties of $AgGaS_2$ thin films Tell, B.;Kasper, H.M.