• 제목/요약/키워드: Ag electrode

검색결과 651건 처리시간 0.03초

LTCC 전극공정부산물 침출 용액으로부터 은 회수 및 은 나노입자 제조 (Recovery and Synthesis of Silver Nanoparticles from Leaching Solution of LTCC Electrode By-Products)

  • 유주연;강유빈;박진주;류호진;윤진호;이근재
    • 한국분말재료학회지
    • /
    • 제24권4호
    • /
    • pp.315-320
    • /
    • 2017
  • There has been much interest in recycling electronic wastes in order to mitigate environmental problems and to recover the large amount of constituent metals. Silver recovery from electronic waste is extensively studied because of environmental and economic benefits and the use of silver in fabricating nanodevices. Hydrometallurgical processing is often used for silver recovery because it has the advantages of low cost and ease of control. Research on synthesis recovered silver into nanoparticles is needed for application to transistors and solar cells. In this study, silver is selectively recovered from the by-product of electrodes. Silver precursors are prepared using the dissolution characteristics of the leaching solution. In the liquid reduction process, silver nanoparticles are synthesized under various surfactant conditions and then analyzed. The purity of the recovered silver is 99.24%, and the average particle size of the silver nanoparticles is 68 nm.

Pb-기판의 표면특성에 미치는 합금원소의 영향 (Effects of Alloying Elements on the Surface Characteristics of Pb-Substrate for Battery)

  • 오세웅;최한철
    • 한국표면공학회지
    • /
    • 제39권6호
    • /
    • pp.302-311
    • /
    • 2006
  • Nowadays the open-type lead-acid battery for vehicle use is being replaced with the sealed-type because it needs no maintenance and has a longer cycle life. Thus researches on this battery are being conducted very actively by many advanced battery companies. There is, however, a serious problem with the maintenance free(MF) battery that its cathode electrode has a limited cycle life due to a corrosion of grid. In this study, it was aimed to improve a corrosion resistance of the cathode grid which is commonly made of Pb-Ca alloy for a mechanical strength. For this purpose, various amounts of alloying elements such as Sn, Ag and Ba were added singly or together to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test and their corrosion layers appeared at the interface between the grids and the active materials were carefully observed in order to clarify effects of alloying elements.

Polymeric Membrane Silver-ion Selective Electrodes Based on Schiff Base N,N'-Bis(pyridin-2-ylmethylene)benzene-1,2-diamine

  • Seo, Hyung-Ran;Jeong, Eun-Seon;Ahmed, Mohammad Shamsuddin;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1699-1703
    • /
    • 2010
  • The Schiff base N,N'-bis(pyridin-2-ylmethylene)benzene-1,2-diamine [BPBD] has been synthesized and explored as ionophore for preparing PVC-based membrane sensors selective to the silver ($Ag^+$) ion. Potentiometric investigations indicate high affinity of this receptor for silver ion. The best performance was shown by the membrane of composition (w/w) of ionophore: 1 mg, PVC: 33 mg, o-NPOE: 66 mg and additive were added 50 mol % relative to the ionophore in 1 mL THF. The sensor works well over a wide concentration range $1{\times}10^{-3}$ to $1.0{\times}10^{-7}$ M by pH 6 at room temperature (slope 58.6 mV/dec.) with a response time of 10 seconds and showed good selectivity to silver ion over a number of cations. It could be used successfully for the determination of silver ion content in environmental and waste water samples.

적층형 세라믹 액츄에이터의 전기-기계적 거동 (Electro-mechanical properties of Multilayer Ceramic Actuators)

  • 정순종;고중혁;하문수;이재석;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.253-256
    • /
    • 2003
  • This study presents the combined effect of electric field application and mechanical compressive stress loading on deformation in a multilayer ceramic actuator, designed with stacking alternatively $0.2(PbMn_{1/3}Nb_{2/3}O_3)-0.8(PbZr_{0.475}Ti_{0.525}O_3)$ ceramics and Ag-Pd electrode. The deformation behaviors were thought to be attributed to relative $180^{\circ}$domain quantities which is determined by pre-loaded stress and electric field. The non-linearity of piezoelectricity and strain are dependent upon the young's modulus resulting from the domain reorientation.

  • PDF

LTCC응용을 위한 Ti-Te계 세라믹스의 저온소결 특성 (Low Temperature Sintering Properties of Ti-Te System Ceramics for LTCC Application)

  • 김재식;류기원;배선기;이영희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1299-1300
    • /
    • 2007
  • In this study, low temperature sintering property of (1-x)$TiTe_{3}O_{8}-xMgTiO_{3}$ ceramics were investigated for LTCC application which enable to cofiring with Ag electrode. $TiTe_{3}O_{8}$ mixed with $MgTiO_3$ to improve the temperature property. In the X-ray diffraction patterns, the columbite structure of $TiTe_{3}O_{8}$ phase and ilmenite structure of $MgTiO_3$ phase were coexisted in all specimens. The bulk densities and dielectric constants were decreased with increasing of $MgTiO_3$. However, the quality factors were increased with $MgTiO_3$ addition. Also, TCRF was shifted to negative(-) direction. Microwave dielectric properties of (1-x)$TiTe_{3}O_{8}-xMgTiO_{3}$ ceramics had similar tendency with calculated value by the mixing rule. The dielectric constant, quality factor and TCRF of $05TiTe_{3}O_{8}-0.5MgTiO_{3}$ ceramics sintered at $830^{\circ}C$ for 3h. were 26.19, 43,290GHz and $-3.9ppm/^{\circ}C$, respectively.

  • PDF

Electrochromic Performance of NiOx Thin Film on Flexible PET/ITO Prepared by Nanocrystallite-Dispersion Sol

  • Kwak, Jun Young;Jung, Young Hee;Park, Juyun;Kang, Yong-Chul;Kim, Yeong Il
    • 대한화학회지
    • /
    • 제65권2호
    • /
    • pp.125-132
    • /
    • 2021
  • An electrochromic nickel oxide thin film was fabricated on a flexible PET/ITO substrate using a nanocrystallite- dispersed coating sol and bar coater. Nanocrystalline NiOx of 3-4 nm crystallite size was first synthesized by base precipitation and thermal conversion. This NiOx nanocrystallite powder was mechanically dispersed in an alcoholic solvent mixed with a silane binder to prepare a coating sol for thin film. This sol method is different from the normal sol-gel method in that it does not require the conversion of precursor by heat treatment. Therefore, this method provides a very facile method to prepare NiOx thin films on any kind of substrate and it can be easily applied to mass production. The electrochromic performance of this NiOx thin film on PET/ITO electrode with a thickness of about 400 nm was investigated in a nonaqueous LiClO4 electrolyte solution by cyclic voltammetric and repeated chronoamperometric measurements in conjunction with spectrophotometry. The visible light modulation of 44% and the colorization efficiency of 41 ㎠/C at 550 nm were obtained at the step potentials of -0.8/+1.2 V vs Ag and a duration of 30 s.

Preparation and Electrochemical Behaviors of Petal-like Nickel Cobaltite/Reduced Graphene Oxide Composites for Supercapacitor Electrodes

  • Kim, Jeonghyun;Park, Soo-Jin;Kim, Seok
    • 공업화학
    • /
    • 제30권3호
    • /
    • pp.324-330
    • /
    • 2019
  • Petal-like nickel cobaltite ($NiCo_2O_4$)/reduced graphene oxide (rGO) composites with different $rGO-to-NiCo_2O_4$ weight ratios were synthesized using a simple hydrothermal method and subsequent thermal treatment. In the $NiCo_2O_4/rGO$ composite, the $NiCo_2O_4$ 3-dimensional nanomaterials contributed to the improvement of electrochemical properties of the final composite material by preventing the restacking of the rGO sheet and securing ion movement passages. The composite structure was examined by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Fourier-transform infrared (FT-IR) spectroscopy. The FE-SEM and TEM images showed that petal-like $NiCo_2O_4$ was supported on the rGO surface. Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) were used for the electrochemical analysis of composites. Among the prepared composites, $0.075g\;rGO/NiCo_2O_4$ composite showed the highest specific capacitance of $1,755Fg^{-1}$ at a current density of $2Ag^{-1}$. The cycle performance and rate capability of the composite material were higher than those of using the single $NiCo_2O_4$ material. These nano-structured composites could be regarded as valuable electrode materials for supercapacitors that require superior performance.

Synthesis of Silver Nanoparticles using Pulse Electrolysis in 1-n-butyl-3-methylimidazolium Chloride Ionic Liquid

  • Jeonggeun Jang;Jihee Kim;Churl Kyoung Lee;Kyungjung Kwon
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.15-20
    • /
    • 2023
  • Ionic liquids are considered as a promising, alternative solvent for the electrochemical synthesis of metals because of their high thermal and chemical stability, relatively high ionic conductivity, and wide electrochemical window. In particular, their wide electrochemical window enables the electrodeposition of metals without any side reaction of electrolytes such as hydrogen evolution. The electrodeposition of silver is conducted in 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) ionic liquid system with a silver source of AgCl. This study is the first attempt to electrodeposit silver nanoparticles without using co-solvents other than [C4mim]Cl. Pulse electrolysis is employed for the synthesis of silver nanoparticles by varying applied potentials from -3.0 V to -4.5 V (vs. Pt-quasi reference electrode) and pulse duration from 0.1 s to 0.7 s. Accordingly, the silver nanoparticles whose size ranges from 15 nm to ~100 nm are obtained. The successful preparation of silver nanoparticles is demonstrated regardless of the kinds of substrate including aluminum, stainless steel, and carbon paper in the pulse electrolysis. Finally, the antimicrobial property of electrodeposited silver nanoparticles is confirmed by an antimicrobial test using Staphylococcus aureus.

IDT 전극 패턴 임베디드 압전 에너지 하베스터의 특성 (Energy Harvesting Characteristics of Interdigitated (IDT) Electrode Pattern Embedded Piezoelectric Energy Harvester)

  • 이민선;김창일;윤지선;박운익;홍연우;백종후;조정호;박용호;장용호;최범진;정영훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.581-588
    • /
    • 2016
  • Piezoelectric thick films of a soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material were produced by a conventional tape casting method. Thereafter, the interdigitated (IDT) Ag-Pd electrode pattern was printed on the $25{\mu}m$ thick piezoelectric film at room temperature. Co-firing of the 10-layer laminated piezoelectric thick films was conducted at $1,100^{\circ}C$ and $1,150^{\circ}C$ for 1 h, respectively. Piezoelectric cantilever energy harvesters were successfully fabricated using the IDT electrode pattern embedded piezoelectric laminates for 3-3 operation mode. Their energy harvesting characteristics were investigated with an excitation of 120 Hz and 1 g under various resistive loads (ranging from $10k{\Omega}$ to $200k{\Omega}$). A parabolic increase of voltage and a linear decrease of current were shown with an increase of resistive load for all the energy harvesters. In particular, a high output power of 3.64 mW at $100k{\Omega}$ was obtained from the energy harvester (sintered at $1,150^{\circ}C$).

Li2CO3 첨가에 따른 입방정 Bi1.5Zn1.0Nb1.5O7(c-BZN)의 상 변화 및 그에 따른 유전특성 변화 연구 (A Study on the Phase Change of Cubic Bi1.5Zn1.0Nb1.5O7(c-BZN) and the Corresponding Change in Dielectric Properties According to the Addition of Li2CO3)

  • 이유선;김윤석;최슬원;한성민;이경호
    • 마이크로전자및패키징학회지
    • /
    • 제30권4호
    • /
    • pp.79-85
    • /
    • 2023
  • (1-4x)Bi1.5Zn1.0Nb1.5O7-3xBi2Zn2/3Nb4/3O7-2xLiZnNbO4(x=0.03-0.21) 조성의 새로운 저온 동시 소성 세라믹(LTCC) 유전체는 Bi1.5Zn1.0Nb1.5O7-xLi2CO3(x=0.03-0.21) 혼합물을 850℃~920℃에서 4 시간 반응성 액상소결(reactive liquid phase sintering)을 하여 제조하였다. 소결이 진행되는 동안 Li2CO3는 Bi1.5Zn1.0Nb1.5O7과 반응하여 Bi2Zn2/3Nb4/3O7과 LiZnNbO4를 생성하였고 얻어진 소결체의 상대 소결밀도는 이론 밀도의 96% 이상이었다. 초기 Li2CO3 함량(x)을 조절하여 최종 소결체내에 존재하는 Bi1.5Zn1.0Nb1.5O7, Bi2Zn2/3Nb4/3O7 및 LiZnNbO4 상의 상대적인 함량을 제어함으로써 높은 유전율(εr), 낮은 유전손실(tan δ) 및 NP0 특성(TCε ≤ ±30 ppm/℃)의 유전율 온도계수(TCε)를 갖는 유전체를 개발할 수 있었다. Li2CO3의 첨가가 x=0.03 mol에서 x=0.15 mol로 증가함에 따라 얻어진 복합체 내의 Bi2Zn2/3Nb4/3O7와 LiZnNbO4의 부피 분율은 증가하였고, Bi1.5Zn1.0Nb1.5O7의 부피 분율은 감소하였다. 그 결과 복합체의 유전율(εr)은 148.38에서 126.99로 유전손실(tan δ)은 5.29×10-4에서 3.31×10-4로 그리고 유전율 온도계수(TCε)는 -340.35 ppm/℃에서 299.67 ppm/℃로 변화되었다. NP0 특성을 갖는 유전체는 Li2CO3의 함량이 x=0.09일 때 얻을 수 있었고, 이 때의 유전율(εr)은 143.06, 유전손실(tan δ)값은 4.31×10-4, 그리고 유전율 온도계수(TCε)값은 -9.98 ppm/℃ 이었다. Ag전극과의 화학적 호환성 실험은 개발된 복합 재료는 Ag 전극과 동시 소성 과정에서 전극과 반응이 없음을 보여주었다.