Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.4.315

Recovery and Synthesis of Silver Nanoparticles from Leaching Solution of LTCC Electrode By-Products  

Yoo, Juyeon (Department of Energy Engineering, Dankook University)
Kang, Yubin (Department of Energy Engineering, Dankook University)
Park, Jinju (Department of Energy Engineering, Dankook University)
Ryu, Hojin (Yuchun Tech Co.)
Yoon, Jin-Ho (Advanced Materials and Processing Center, Institute for Advanced Engineering)
Lee, Kun-Jae (Department of Energy Engineering, Dankook University)
Publication Information
Journal of Powder Materials / v.24, no.4, 2017 , pp. 315-320 More about this Journal
Abstract
There has been much interest in recycling electronic wastes in order to mitigate environmental problems and to recover the large amount of constituent metals. Silver recovery from electronic waste is extensively studied because of environmental and economic benefits and the use of silver in fabricating nanodevices. Hydrometallurgical processing is often used for silver recovery because it has the advantages of low cost and ease of control. Research on synthesis recovered silver into nanoparticles is needed for application to transistors and solar cells. In this study, silver is selectively recovered from the by-product of electrodes. Silver precursors are prepared using the dissolution characteristics of the leaching solution. In the liquid reduction process, silver nanoparticles are synthesized under various surfactant conditions and then analyzed. The purity of the recovered silver is 99.24%, and the average particle size of the silver nanoparticles is 68 nm.
Keywords
Ag; Electronic waste; Recovery; Chemical Reduction Method; Nanoparticles;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. A. Abdel-Aal, F. E. Farghaly: Powder Technol., 178 (2007) 51-55.   DOI
2 S. Syed: Waste Management., 50 (2016) 234.   DOI
3 P. Isosaari and M. Sillanpaa: Separation & Purification Review., 46 (2017) 1.   DOI
4 J. M. V. Navazo, G. V. Mendez and L. T. Peiro: Int J Life Cycle Assess., 19 (2014) 567.   DOI
5 R. Montero, A. Guevara and E. dela Torre: J. Earth Sci. Eng., 2 (2012) 590.
6 E. David and J. Kopac: Proceedings., 2 (2015) 5071.
7 E. M. Iannicelli-Zubiani, M. I. Giani, F. Recanati, G. Dotelli, S. Puricelli and C. Cristiani: J. Clean. Prod., 140 (2017) 1204.   DOI
8 I. Birloaga, F. Veglio: J. Environ. Chem. Eng., 4 (2016) 20.   DOI
9 M. Ghodrat, M. A. Rhamdhani, G. Brooks, S. Masood and G. Corder: J. Clean. Prod., 126 (2016) 178.   DOI
10 R. Dimeska, P. S. Murray, S. F. Ralph and G. G. Wallace: Polymer., 47 (2006) 4520.   DOI
11 H. S. Shin, H. J. Yang, S. B. Kim and M. S. Lee: J. Colloid Interface Sci., 274 (2004) 89.   DOI
12 P. Kumar, M. Govindaraju, S. Senthamilselvi and K. Premkumar: Colloids Surf. B: Biointerfaces., 103 (2013) 658.   DOI
13 M. Ramos, E. Fortunati, M. Peltzer, F. Dominici, A. Jimenez and M. del Carrmen Garrigos: Polym. Degrad. Stab., 108 (2014) 158.   DOI
14 S. Ahmed, M. Ahmad, B. L. Swami and S. Ikram: J. Adv. Res., 7 (2016) 17.   DOI
15 P. K. Sahoo, S. K. Kamal, T. J. Kumar, B. Sreedhar, A. K. Singh and S. K. Srivastava: Defence. Sci. J., 59 (2009) 447.   DOI
16 J. Yoo, H. Jang and K. J. Lee: J. Korean Powder Metall. Inst., 23 (2016) 1.   DOI
17 A. Modi, K. Shukla, J. Pandya and K. Parmar: Int. J. Emerg. Technol. Adv. Eng., 2 (2012) 599.
18 P. Patnaik: Handbook of Inorganic Chemicals, McGraw- Hill, USA (2002).
19 M. J. O'Neil, A. Smith, P. E. Heckelman and S. Budavary: The Meric index: an encyclopedia of chemicals, drugs, and biologicals, MERCK&CO., INC., USA (2001).
20 A. Ajaypraveenkumar, J. Henry, K. Mohanraj, G. Sivakumar and S. Umamaheswari: J. Mater. Sci. Technol., 31 (2015) 1125.   DOI