• Title/Summary/Keyword: Ag addition

Search Result 584, Processing Time 0.024 seconds

Effects of Mm(misch metal) Addition on The Property of Ag-CdO alloys for Electrical Contactor (전기접점용 Ag-CdO합금의 물성에 미치는 Mm(misch metal) 첨가의 영향)

  • Park, Su-Dong;Lee, Hee-Woong;Kim, Bong-Seo;Kim, Byung-Geol;Song, Jae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.34-37
    • /
    • 2004
  • It is well known that Ag-CdO alloy for electrical contactor has been widely used in weak or middle electric current field. But it is necessary to decrease Cd contents without decrease of contactor property because Cd is harmful to human body. The present work has been carried out to investigate effects of Mm (misch metal) addition on the property of Ag-CdO alloy for electrical contactor. As the results of present works, hardness and strength was improved and arc resistance was improved, also, in spite of decrease Cd contents by the Mm addition. It was estimated that Ag-oxide particle was refined by Mm addition.

  • PDF

The Effects of Ag Addition on the Structure and Mechanical Properties of Aluinium Lithium Alloys (알루미튬 리튬합금의 조직 및 기계적 성질에 미치는 Ag첨가의 영향)

  • Sin, Hyeon-Sik;Jeong, Yeong-Hun;Sin, Myeong-Cheol;Jang, Hyeon-Gu
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.556-565
    • /
    • 1994
  • Effects of Ag addition to 2090 and CP 276 Al-Li alloy systems on the microstructure and mechanical properties have been investigated. The addition of silver up to 0.16wt.% reduced the grain size of the alloys, and was responsible for the formation of finer and more uniform $\delta$'($AI_{3}Li$) and $T_{1}(AI_{2}CuLi$) precipitates in 2090 alloys, even though no variation of precipitates was found in CP 276 alloys. The addition of 0.16wt.% Ag improved the tensile strength of 2090 alloys about 40MPa with the expense of small reduction of percent elongation. However, the small addition of Ag to CP 276 containing Mg did not show any variation of tensile strength and elongation. The aging treatment of these alloys at $150^{\circ}C$ for 70 or 90 hours, depending on alloy systems, showed peak hardness value of about 92 $H_rB$.

  • PDF

Characteristic of Cu-Ag Added Thin Film on Molybdenum Substrate for an Advanced Metallization Process (TFT-LCDs에 적용 가능한 Cu-Ag 박막에 대한 Mo 기판 위에서의 특성조사)

  • Lee, H.M.;Lee, J.G.
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.257-263
    • /
    • 2006
  • We have investigated the effect of silver added to Cu films on the microstructure evolution, resistivity, surface morphology, stress relaxation temperature, and adhesion properties of Cu(Ag) alloy thin films deposited on Mo glue layer upon annealing. In addition, pure Cu films deposited on Mo has been annealed and compared. The results show that the silver in Cu(Ag) thin films control the grain growth through the coarsening of its precipitates upon annealing at $300^{\circ}C{\sim}600^{\circ}C$ and the grain growth of Cu reveals the activation energy of 0.22 eV, approximately one third of activation energy for diffusion of Ag dopant along the grain boundaries in Cu matrix (0.75 eV). This indicates that the grain growth can be controlled by Ag diffusion along the grain boundaries. In addition, the grain growth can be a major contributor to the decreased resistivity of Cu(Ag) alloy thin films at the temperature of $300^{\circ}C{\sim}500^{\circ}C$, and decreases the resistivity of Cu(Ag) thin films to $1.96{\mu}{\Omega}-cm$ after annealing at $600^{\circ}C$. Furthermore, the addition of Ag increases the stress relaxation temperature of Cu(Ag) thin films, and thus leading to the enhanced resistance to the void formation, which starts at $300^{\circ}C$ in the pure Cu thin films. Moreover, Cu(Ag) thin films shows the increased adhesion properties, possibly resulting from the Ag segregating to the interface. Consequently, the Cu(Ag) thin films can be used as a metallization of advanced TFT-LCDs.

Solderability and BGA Joint Reliability of Sn-Ag-Cu-In-(Mn, Pd) Pb-free Solders (Sn-Ag-Cu-In-(Mn, Pd) 무연솔더의 솔더링성과 BGA 접합부 신뢰성)

  • Jang, Jae-Won;Yu, A-Mi;Lee, Jong-Hyun;Lee, Chang-Woo;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.53-57
    • /
    • 2013
  • Although the lowering of Ag content in Sn-3.0Ag-0.5Cu is known to improve the mechanical shock reliability of the solder joint, it is also known to be detrimental to the solderbility. In this study, the quaternary alloying effect of In and the minor alloying effects of Mn and Pd on the solderability, thermal cycling and mechanical shock reliabilities of the low Ag content Sn-1.2Ag-0.7Cu solder were investigated using board-level BGA packages. The solderability of Sn-1.2Ag-0.7Cu-0.4In was proved to be comparable to that of Sn-3.0Ag-0.5Cu but its thermal cycling reliability was inferior to that of Sn-3.0Ag-0.5Cu. While the 0.03 wt% Pd addition to the Sn-1.2Ag-0.7Cu-0.4In decreased the solderability and reliabilities of solder joint, the 0.1 wt% Mn addition was proved to be beneficial especially for the mechanical shock reliability compared to those of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu compositions. It was considered to be due that the Mn addition decreased the Young's modulus of low Ag content Pb-free solders.

Property changes of Sintered Ag-SnO$_2$contact by Oxide addition (산화물 첨가에 의한 Ag-SnO$_2$contact by Oxide addition)

  • 한세원;이동윤;조해룡;이희웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.52-55
    • /
    • 1989
  • The properties of sintered Ag-SnO$_2$contacts which contain the second oxide were investigated with hardeness, workability, electrical conductivity and are erosion. Ag-SnO$_2$contacts containing ZnO or Bi$_2$O$_3$have most excellent workability and arc erosion endurance.

  • PDF

A Study on the Effects of Ag Addition on the Mechanical Properties and Microstructure in Atomized Al-Zn-Mg Alloys (분무 Al-Zn-Mg 합금의 기계적 성질 및 미세조직에 미치는 Ag 첨가의 영향)

  • Shin, Hee-Sang;Jeong, Tae-Ho;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.19 no.6
    • /
    • pp.456-465
    • /
    • 1999
  • The overall objective of this study is to investigate the effect of Ag addition on the mechanical properties and microstructure of rapid solidified 7000 Al series alloys. Al-Zn-Mg-Cu alloys with small amounts of Ag was fabricated into the powder by gas atomization. The powder was extruded after the cold compaction and degassing and then followed by T6 heat treatment. Microstructure observation, phase analysis, room and high temperature tensile test and hardness test were pursued. The tensile strength and hardness of Ag-added alloy after heat treatment was increased with increasing Ag contents. However, the elongation of extruded alloys was not increased as much as to be expected. The reason of this result seems to be related to $the{\Omega}$ phase, which contribute to the high temperature strength stability of Al-Cu-Zn alloys through the formation of eutectoid with Ag addition.

  • PDF

Synthesis of Flake Ag Powder by Polyol Process (폴리올법에 의한 편상의 은 분말 합성)

  • Kim Dong-Jin;Liang Huanzhen;Ahn Jong-Gwan;Lee Jae-Ryeong;Chung Hun-Saeng
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.477-485
    • /
    • 2004
  • Monodispersed flaky silver powder was obtained by controlling the ratios of $H_{2}O_{2}/NH_{3}$ and Agin in a mixed solution of ethylene glycol and ammonia with an addition of PVP. The effects of $NH_{3}/Ag,\; H_{2}O_{2}/Ag\;and\;H_{2}PtCl_{6}/Ag$ on its morphology and size were investigated. In $H_{2}O_{2}-NH_{3}-AgNO_{3}\;system,\;NH_{3}/Ag$ molar ratio was found to be an important reaction factor for the nucleation and crystal growth of Ag powder. The synthesis of flaky powder was optimized at over 6 of $NH_{3}/Ag \;and\;5\;of\;H_{2}O_{2}/Ag\;under\;1.0{\times}10^{-3}\;of\;Pt/Ag.\;Moreover,\;as\;the\; NH_{3}/Ag$ molar ratio increased, the size of precipitates was increased regardless of the amount of Pt. In the absence of $H_{2}PtCI$, the morphology and size of reduced Ag powder were found to be irregular in shape $2-4{\mu}m$ in diameter. However, homogenized fine Ag powder was obtained due to heterogeneous nucleation when $H_{2}PtCI$ used as a cat-alyst, and flaky one was synthesized with the addition of Pt over $1.0{\times}10^{-3}$ of Pt/Ag.

Removal of Reactive Orange 16 by the Ag/TiO2 Composite Produced from Micro-emulsion Method (마이크로에멀젼 방법에 의해 제조된 Ag/TiO2의 Reactive Orange 16 제거에 관한 연구)

  • Lee, SiJin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.11
    • /
    • pp.5-10
    • /
    • 2019
  • For the development of long-wavelength responding photocatalyst, Ag was applied to commercial $TiO_2$ to produce $Ag/TiO_2$ photocatalyst. Moreover, micro-emulsion method was used in order to increase the efficiency of the photocatalyst by enhancing the dispersion of Ag. Physical properties of the manufactured catalyst were analyzed by scanning electron microscopy (SEM), field emission transmission electron microscopy (FE-TEM) and diffuse reflectance spectroscopy (DRS). For the catalytic performance measurement, RO 16 (Reactive Orange 16) removal was performed with 25 ppm RO 16 under UV-A (365 nm) irradiation. In addition, ball milling and dip-coating method were used to synthesize the photocatalyst for the comparison of the outcomes of using different synthesis methods. In addition, catalytic performance was improved by varying the Ag content and surfactant content. The highest catalytic performance was shown at $Ag/TiO_2$ synthesized by micro-emulsion method with 2 wt% of Ag content, and 0.5 g of the surfactant.

A Study on the Characteristics of Low Pb Sn-5%Pb-1.5%Pb-1.5Ag-x%In Solder Alloys (저 Pb Sn-5%Pb-1.5%Ag-x%In계 솔도 합금의 특성에 관한 연구)

  • Hong, Sun-Guk;Ju, Cheol-Hong;Gang, Jeong-Yun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1011-1019
    • /
    • 1998
  • This work designed Sn-5%Pb-1.5%Ag-x%In solder alloy to develop the solder alloy with low Pb content. This solder alloy doesn't cause environmental pollution. and this study reviewed the probability of replacement of Sn-37%Pb solder as evaluation of melting range, wettability. microstructure, microhardne'ss, tensile strength, drossability of this new solder alloys. The level of international regulation in dissolution amount of Pb ion was 3ppm. But dissolution amount of Pb ion in Sn-5%Pb solder alloy confirmed not to threat the global environmental is 0.46ppm. The melting range of this solder alloy was $183-192^{\circ}C$. Also the range of solidification was very narrow within $5^{\circ}C$. The wettability was similar to Sn-37%Pb solder, and the effect of amount of In addition of wettability couldn't be founded. The probability of replacement in the melting range and wettability is very high. And microhardness of this solder alloy was 1.5 times of conventional type solder. Tensile strength of new solder alloys was a little high than that of conventional type solder. With increasing amount of In% addition, tensile strength was increased, but elongation was decreased. The solder alloy of l%In addition revealed AgSn and Pb on dendrite microstructure boundary, and $Ag_3Sn$, $Ag_3In$ and Pb were revealed on it at the solder alloy of 3% In addition. The drossability was superior to Sn-37%Pb solder alloy and the solder alloys of 2% In addition was not generated for 3hrs.

  • PDF

Effects of Ag on the Characteristics of Sn48In52Agx (wt%) Low-Melting Solders for Photovoltaic Ribbon (태양광 리본용 Sn48In52Agx (wt%) 저융점 솔더의 특성에 미치는 Ag의 영향)

  • Seung-Han Lee;Dong-Hyeon Shin;Tae-Sik Cho;Il-Sub Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.74-78
    • /
    • 2024
  • We have studied the effects of Ag on the characteristics of Sn48In52Agx (wt%) low-melting solders for photovoltaic ribbons. The Sn48In52 (wt%) solder coexisted in the InSn4 and In3Sn alloys. Ag atoms added in the solder formed an AgIn2 alloy by reacting with some part of In atoms, while they did not react with Sn atoms. The addition of Ag atoms in the Sn48In52Agx (wt%) solders showed useful results; an increase in peel strength and a decrease in melting temperature. The peel strength of the ribbon plated with the Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn48In52Ag1 (wt%) solder largely increased to 125.1 N/mm2. In the meanwhile, the melting temperature of the Sn48In52 (wt%) solder was 119.2℃, and that of the Sn48In52Ag1 (wt%) solder decreased to 114.0℃.