• Title/Summary/Keyword: Ag/AgCl-NPs

Search Result 11, Processing Time 0.02 seconds

Controllable Biogenic Synthesis of Intracellular Silver/Silver Chloride Nanoparticles by Meyerozyma guilliermondii KX008616

  • Alamri, Saad A.M.;Hashem, Mohamed;Nafady, Nivien A.;Sayed, Mahmoud A.;Alshehri, Ali M.;El-Shaboury, Gamal A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • Intracellular synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Meyerozyma guilliermondii KX008616 is reported under aerobic and anaerobic conditions for the first time. The biogenic synthesis of Ag-NP types has been proposed as an easy and cost-effective alternative for various biomedical applications. The interaction of nanoparticles with ethanol production was mentioned. The purified biogenic Ag/AgCl-nanoparticles were characterized by different spectroscopic and microscopic approaches. The purified nanoparticles exhibited a surface plasmon resonance band at 419 and 415 nm, confirming the formation of Ag/AgCl-NPs under aerobic and anaerobic conditions, respectively. The planes of the cubic crystalline phase of the Ag/AgCl-NPs were confirmed by X-ray diffraction. Fourier-transform infrared spectra showed the interactions between the yeast cell constituents and silver ions to form the biogenic Ag/AgCl-NPs. The intracellular Ag/AgCl-NPs synthesized under aerobic condition were homogenous and spherical in shape, with an approximate particle size of 2.5-30nm as denoted by the transmission electron microscopy (TEM). The reaction mixture was optimized by varying reaction parameters, including temperature and pH. Analysis of ultrathin sections of yeast cells by TEM indicated that the biogenic nanoparticles were formed as clusters, known as nanoaggregates, in the cytoplasm or in the inner and outer regions of the cell wall. The study recommends using the biomass of yeast that is used in industrial or fermentation purposes to produce Ag/AgCl-NPs as associated by-products to maximize benefit and to reduce the production cost.

Transport behavior of PVP (polyvinylpyrrolidone) - AgNPs in saturated packed column: Effect of ionic strength and HA (포화 컬럼실험에서 이온강도 변화 및 유기물질 출현에 의한 PVP로 코팅된 은나노 입자의 거동 연구)

  • Heo, Jiyong;Han, Jonghun;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • Recent Engineered nanoparticles were increasingly exposed to environmental system with the wide application and production of nanomaterials, concerns are increasing about their environmental risk to soil and groundwater system. In order to assess the transport behavior of silver nanoparticles (AgNPs), a saturated packed column experiments were examined. Inductively coupled plasma-mass spectrometry and a DLS detector was used for concentration and size measurement of AgNPs. The column experiment results showed that solution chemistry had a considerable temporal deposition of AgNPs on the porous media of solid glass beads. In column experiment, comparable mobility improvement of AgNPs were observed by changing solution chemistry conditions from salts (in both NaCl and $CaCl_2$ solutions) to DI conditions, but in much lower ionic strength (IS) with $CaCl_2$. Additionally, the fitted parameters with two-site kinetic attachment model form the experimental breakthrough curves (BTCs) were associated that the retention rates of the AgNPs aggregates were enhanced with increasing IS under both NaCl and $CaCl_2$ solutions.

Preparation of PEBAX-5513/Ag Nanoparticles/7,7,8,8-tetracyanoquinodimethane Composites for Olefin Separation and Analysis of Anions (올레핀 분리용 PEBAX-5513/Ag Nanoparticles/7,7,8,8-tetracyanoquinodimethane 복합체 제조 및 음이온 효과 분석)

  • Kim, Soyoung;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.246-251
    • /
    • 2019
  • Facilitated transport membranes using silver nanoparticles as carriers for olefin/paraffin separation have been interested. $AgBF_4$ has been used as a precursor of silver nanoparticles in previous studies. However, relatively expensive $AgBF_4$ is not suitable for commercialization, and thus, PEBAX-5513/AgNPs (precursor: $AgClO_4$)/7,7,8,8-tetracyanoquinodimethane (TCNQ) composite membranes were prepared using silver nanopaticles with relatively inexpensive $AgClO_4$ precursors. Composite membranes of various compositions were prepared for PEBAX-5513/AgNPs/TCNQ composites, but no separation performance was observed. As a result of FT-IR analysis, it was confirmed that silver nanoparticles were formed in the PEBAX-5513 polymer and the surface of Ag nanoparticles was polarized by TCNQ, but the formed silver nanoparticles were not stabilized. From these results, it was concluded that the anion of the precursor plays an important role in the olefin/paraffin separation.

Aggregation Behavior of Silver and TiO2 Nanoparticles in Aqueous Environment (수환경 특성에 따른 은과 이산화티탄 나노입자의 응집 특성 연구)

  • Lim, Myunghee;Bae, Sujin;Lee, Yong-Ju;Lee, Sung-Kyu;Hwang, Yu Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.571-579
    • /
    • 2013
  • The aggregation behaviors of silver nanoparticles (AgNPs) and titanium dioxide ($TiO_2$) nanoparticles were investigated. Time-resolved dynamic light scattering (DLS) was used to study the initial aggregation of AgNPs and $TiO_2$ over a range of mono (NaCl) and divalent ($CaCl_2$) electrolyte concentrations. The effects of pH, initial concentration of NPs and natural organic matters (NOM) on the aggregation of NPs were also investigated. The aggregation of both nanoparticles showed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type behavior. Divalent electrolyte was more efficient in destabilize the AgNPs and $TiO_2$ than monovalent electrolyte. The effect of pH on the aggregation of AgNPs was not significant. But the aggregation rate of $TiO_2$ was much higher with increasing pH. Higher NPs concentration leads to faster aggregation. Natural organic matter (NOM) was found to substantially hinder the aggregation of both AgNPs and $TiO_2$. This study found that the aggregation behavior of AgNPs and $TiO_2$ are closely associated with environmental factors such as ionic strength, pH, initial concentration of NPs and NOM.

Nanoparticles Modified With Cationic Thiol Surfactant as Efficient Inhibitors for the Corrosion of Carbon Steel

  • Azzam, Eid M.S.;Sami, Radwa M.;Alenezi, Khalaf M.;El Moll, Hani;Haque, A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.308-316
    • /
    • 2021
  • In this work, we report synthesis, characterization and corrosion inhibition properties of cationic thiol surfactant-capped silver (SC-Ag-NPs) and gold (SC-Au-NPs) nanoparticles. SC-Ag-NPs and SC-Au-NPs were characterized using regular techniques include TEM. Corrosion study was carried out using carbon steel (CS) in 3.5% NaCl aqueous solution and characterized using multiple electrochemical techniques. Our results suggest that the paint containing SC-Ag-NPs and SC-Au-NPs endow efficient corrosion protection to the CS. Especially, SC-Au-NPs based paint form a stronger barrier between the metal and the corrosive ions, leading to better inhibition properties.

Transport of PVP-coated Silver Nanoparticles in Saturated Porous Media (포화된 다공성매체에서 PVP-코팅된 은나노입자의 이동성 연구)

  • Bae, Sujin;Jang, Min-Hee;Lee, Woo Chun;Park, Jae-Woo;Hwang, Yu Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.104-110
    • /
    • 2016
  • The transport of silver nanoparticles (AgNPs) was investigated through a column packed with sand. A series of column experiments were carried out to evaluate the effect of ionic strength (IS), pH, electrolyte type and clay mineral on mobility of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs). The deposition of PVP-AgNPs was increased with increasing solution ionic strength and decreasing pH. Furthermore, the depositon of PVP-AgNPs was affected by the electrolyte type (NaCl vs. NaNO3) and was shown to be greater at NaNO3 solution. Also, the transport of PVP-AgNPs was greatly increased after the pre-deposition of clay particles on sand. Our results suggest that various environmental factors can influence the mobility of PVP-AgNPs in soil-groundwater systems and should be carefully considered in assessing their environmental risks.

Poly(ethylenimine)-Stabilized Hollow Gold-Silver Bimetallic Nanoparticles: Fabrication and Catalytic Application

  • Shin, Kuan-Soo;Kim, Ji-Hoon;Kim, In-Hyun;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.906-910
    • /
    • 2012
  • Hollow gold-silver bimetallic nanoparticles (AuAg-HNPs) have been synthesized and their optical and structural properties were characterized. Initially Ag nanoparticles (Ag-NPs) were prepared using poly(ethylenimine) (PEI) as a reducing and a stabilizing agent simultaneously. AuAg-HNPs could then be synthesized via galvanic replacement reaction in a PEI aqueous solution by reacting sacrificial Ag template with a precursor compound of Au, i.e., $HAuCl_4$. Due to the presence of abundant amine functional groups in PEI, which could act as the dissolving ligand for AgCl, the precipitation problem of $Ag^+$ in the presence of Cl from $HAuCl_4$ salt was avoided. On this basis, the relatively high concentrations of $HAuCl_4$ and PEI-stabilized Ag nanoparticles could be used for the fabrication of AuAg-HNPs. Because of their increased surface areas and reduced densities, the AuAg-HNPs were expected and confirmed to outperform their solid counterparts in applications such as catalysis for the reduction of 4-nitrophenol in the presence of $NaBH_4$.

Silver Nanoparticles Enhanced Chemiluminescence of Luminol-KIO4 System for the Determination of Mandelic Acid (Mandelic Acid 정량을 위한 은 나노입자에 의해 증가된 화학발광분석법)

  • Alam, MD R-Mahmnur;Kamruzzaman, Mohammad;Kim, So Yeon;Jo, Hae Jin;Lee, Sang Hak;Kim, Young Ho;Choi, Jong Ha
    • Applied Chemistry
    • /
    • v.15 no.1
    • /
    • pp.21-24
    • /
    • 2011
  • A sensitive silver nanoparticles (Ag NPs) enhanced chemiluminescence (CL) method is reported for the determination of mandelic acid (MA). This method is based on the luminol-KIO4 system catalyzed by Ag NPs to produce CL spectra. Prepared Ag NPs were characterized by UV-visible spectra and TEM image. Under optimal condition, CL spectra of the system were responded linearly with the concentration of MA in the range of 2.5×10-9 to 2.0×10-8 mol L-1 (r=0.9989) with a detection limit of 1.2×10-10 mol L-1. The relative standard deviation of 1.0×10-7 mol L-1 MA was found 1.45 (n=9).

Characterization of Electrochromic Properties of Au Nanoparticles Incorporated Poly (3, 4-ethylenedioxythiphene) Film (Au 나노입자가 함침된 Poly (3, 4-ethylenedioxythiphene) 고분자 박막의 전기변색 특성연구)

  • Lee, Jong-Seok;Koo, Kyoung-Hoe;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.527-532
    • /
    • 2009
  • The electrochromic properties of Au nanoparticles (NPs) incorporating poly (3, 4-ethylenedioxythiphene) (PEDOT) film were investigated. Trisodium citrate was used for stabilizing Au NPs to control the size. The capping molecules of the Au nanoparticles were exchanged from citrate to 2-mercaptoethanol (2-ME). Water was removed by centrifuge and Au NPs were redispersed in methanol (MeOH). Finally, we obtained ca. 11.7 nm diameter of Au NPs. The effects of 0.15 at% of Au NPs incorporation on the optical, electrical, and eletrochromic properties of PEDOT films were investigated. The electrical property and switching speed of Au/PEDOT film was slightly improved over that of PEDOT film because Au NPs play a hopping site role and affect packing density of the PEDOT chain. Through the ultra violet-visible spectra of PEDOT and Au/PEDOT films at -0.7 V (vs Ag/AgCl), blue shift of maximum absorption peak was observed from PEDOT (585.4 nm) to Au/PEDOT (572.2 nm) due to a shortening of conjugated length of PEDOT. The Au NPs interfered with the degree of conjugation and the maximum absorption peak was shifted to shorter wavelength.

Development of GDH-glucose Sensor using Ferrate Complex (철 화합물을 이용한 당 탈수소화 효소-혈당센서의 연구)

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Samantha Saeyoung;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2014
  • Redox complexes to transport electrons from enzyme to electrodes are very important part in glucose sensor. Pentacyanoferrate-bound aniline ($Fe(CN)_5$-aminopyridine), was prepared as a potential redox mediator in a glucose dehydrogenase (GDH)-glucose sensor. The synthesized pyridyl-$NH_2$ to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. A amperometric enzyme-linked electrode was developed based on GDH, which catalyses the oxidation of glucose. Glucose was detected using GDH that was co-immobilized with an $Fe(CN)_5$-aminopyridine and gold nano-particles (AuNPs) on ITO electrodes. The $Fe(CN)_5$-aminopyridine and AuNPs immobilized onto ITO electrodes provided about a two times higher electrochemical response compared to that of a bare ITO electrode. As glucose was catalyzed by wired GDH, the electrical signal was monitored at 0.4 V versus Ag/AgCl by cyclic voltammetry. The anode currents was linearly increased in proportion to the glucose concentration over the 0~10 mM range.