• Title/Summary/Keyword: Aerospace Reliability

Search Result 451, Processing Time 0.021 seconds

Development of the Bus Duct Installation System for Wind Tower (풍력타워용 부스덕트 포설시스템 개발)

  • Rhee, Huinam;Lee, Joon Keun;Kim, Bong-Seok;Park, Seong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • A bus duct system for wind tower is introduced. A marine cable has been widely used in wind tower or various offshore structures. However, as the electric load capacity is increases, large number of cable lines must be used to cover the huge amount of electric capacities. Therefore, the installation of the cable lines becomes very difficult due to the heavy weight and volume of the cables. On the other hand, by using a single bus duct system line, the power capacity amount of 16 cables can be delivered with significantly compacted form. However, unlike flexible cables, the bus duct is relatively stiff which could generate the resonance phenomenon in the operating condition of the wind tower. In this study, the vibration characteristics of the bus duct are investigated and its long-term reliability during the life time of the wind tower is verified.

A Comparative Study of the Linear-elastic and Hyperelastic Models for Degradation of PLA Prepared using Fused Filament Fabrication (FFF 방식으로 제작된 PLA의 열화에 따른 선형탄성 및 초탄성 모델의 비교에 관한 연구)

  • Choi, Na-Yeon;Shin, Byoung-Chul;Zhang, Sung-Uk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • Fused filament fabrication (FFF) is a process extruding and stacking materials. PLA materials are one of the most frequently used materials for FFF method of 3D printing. Polylactic acid (PLA)-based materials are among the most widely used materials for FFF-based three-dimensional (3D) printing. PLA is an eco-friendly material made using starch extracted from corn, as opposed to plastic made using conventional petroleum resin; PLA-based materials are used in various fields, such as packaging, aerospace, and medicines. However, it is important to analyze the mechanical properties of theses materials, such as elastic strength, before using them as structural materials. In this study, the reliability of PLA-based materials is assessed through an analysis of the changes in the linear elasticity of these materials under thermal degradation by applying a hyperelastic analytical model.

Lubrication Modeling of Reciprocating Piston in Piston Pump with High Lateral Load (강한 측력이 작용하는 피스톤 펌프의 왕복동 피스톤 기구 부에서의 윤활모형에 관한 연구)

  • Shin, JungHun;Jung, DongSoo;Kim, KyungWoong
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.116-123
    • /
    • 2014
  • The objective of this study is to model and simulate the nonlinear lubrication performance of the sliding part between the piston and cylinder wall in a hydrostatic swash-plate-type axial piston pump. A numerical algorithm is developed that facilitates simultaneous calculation of the rotating body motion and fluid film pressure to observe the fluid film geometry and power loss. It is assumed that solid asperity contact, so-called mixed lubrication in this study, invariably occurs in the swash-plate-type axial piston pump, which produces a higher lateral moment on the pistons than other types of hydrostatic machines. Two comparative mixed lubrication models, rigid and elastic, are used to determine the reaction force and sliding friction. The rigid model does not allow any elastic deformation in the partial lubrication area. The patch shapes, reactive forces, and virtual local elastic deformation in the partial lubrication area are obtained in the elastic contact model using a simple Hertz contact theory. The calculation results show that a higher reaction force and friction loss are obtained in the rigid model, indicating that solid deformation is a significant factor on the lubrication characteristics of the reciprocating piston part.

A Development of Optimal Design Model for Initial Blank Shape Using Artificial Neural Network in Rectangular Case Forming with Large Aspect Ratio (세장비가 큰 사각케이스 성형 공정에서의 인공신경망을 적용한 초기 블랭크 형상 최적설계 모델 개발)

  • Kwak, M.J.;Park, J.W.;Park, K.T.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.272-281
    • /
    • 2020
  • As the thickness of mobile communication devices is getting thinner, the size of the internal parts is also getting smaller. Among them, the battery case requires a high-level deep drawing technique because it has a rectangular shape with a large aspect ratio. In this study, the initial blank shape was optimized to minimize earing in a multi-stage deep drawing process using an artificial neural network(ANN). There has been no reported case of applying artificial neural network technology to the initial blank optimal design for a square case with large aspect ratio. The training data for ANN were obtained though simulation, and the model reliability was verified by performing comparative study with regression model using random sample test and goodness-of-fit test. Finally, the optimal design of the initial blank shape was performed through the verified ANN model.

Nondestructive evaluation of spot weld quality using by ultrasonic measurement (초음파계측에 의한 SPOT용접품질의 비파괴평가)

  • 박익근
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.109-117
    • /
    • 1994
  • Spot welding has wide used with a high work efficiency in the automotive and aerospace industries. Up to the present, the technique mainly used to test spot welds on production lines has been entirely depended upon destructive chisel or peel testing. Therefore, it's being very important assignment to secure the NDE technique which can be evaluate spot weld quality with more efficiency and high reliability. This paper discusses the feasibility of UNDE techniques to evaluate spot weld quality. For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of a the corona bond from nugget, ultrasonic c-scan image and distribution of reflective echo amplitude was measured by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). As the results of this study, corona bond which is the most dangerous types of interface defects can be successfully detected, as well as expulsion and voids. Ultrasonic testing results were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be successfully measured with the accuracy of 0.8 mm.

  • PDF

Static and dynamic mooring analysis - Stability of floating production storage and offloading (FPSO) risers for extreme environmental conditions

  • Rho, Yu-Ho;Kim, Kookhyun;Jo, Chul-Hee;Kim, Do-Youb
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.179-187
    • /
    • 2013
  • Floating production storage and offloading (FPSO) facilities are used at most of the offshore oil fields worldwide. FPSO usage is expected to grow as oil fields move to deeper water, thus requiring the reliability and stability of mooring wires and risers in extreme environmental conditions. Except for the case of predictable attack angles of external loadings, FPSO facilities with turret single point mooring (SPM) systems are in general use. There are two types of turret systems: permanent systems and disconnectable turret mooring systems. Extreme environment criteria for permanent moorings are usually based on a 100-year return period event. It is common to use two or three environments including the 100-year wave with associated wind and current, and the 100-year wind with associated waves and current. When fitted with a disconnectable turret mooring system, FPSOs can be used in areas where it is desirable to remove the production unit from the field temporarily to prevent exposure to extreme events such as cyclones or large icebergs. Static and dynamic mooring analyses were performed to evaluate the stability of a spider buoy after disconnection from a turret during cyclone environmental conditions.

A Study on the Effect of Insulating Sleeve on Solidification Characteristics of A356 Aluminum Alloy (절연슬리브가 A356 알루미늄 합금의 응고과정에 미치는 영향에 대한 연구)

  • Oh, Min-Joo;Yoo, Seung-Mok;Cho, In-Sung;Kim, Young-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.205-211
    • /
    • 2011
  • Al-Si alloys have been steadily used as a potential material for the achievement of an efficient weight reduction in the automobile and aerospace industries due to its excellent castability and high strength-to-weight ratio. In this study, riser effect and mechanical properties were investigated according to the size of the sleeve. In addition, the effects of riser size on mechanical properties of castings were investigated. On the other hand flow and solidification process were simulated with a hybrid FDM/FEM package named ZCast. As a result, results of simulation and experiments were comparable regarding to the yield strength, tensile strength, elongation and hardness of casting. It proves the reliability of the simulation. It is expected that the proper size of riser can improve the recycling rate of metallic materials and reduce the cost of casting.

Review of Virtual Power Plant Applications for Power System Management and Vehicle-to-Grid Market Development (전력시스템 관리 및 Vehicle to Grid 전력시장 개발을 위한 가상발전소의 활용방안)

  • Jin, Tae-Hwan;Park, Herie;Chung, Mo;Shin, Ki-Yeol;Foley, Aoife;Cipcigan, Liana
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2251-2261
    • /
    • 2016
  • The use of renewable energy sources and energy storage systems is increasing due to new policies in the energy industries. However, the increase in distributed generation hinders the reliability of power systems. In order to stabilize power systems, a virtual power plant has been proposed as a novel power grid management system. The virtual power plant plays includes different distributed energy resources and energy storage systems. We define a core virtual power plant technology related to demand response and ancillary service for the cases of Korea, America, and Europe. We also suggest applications of the proposed virtual power plant to the vehicle-to-grid market for restructuring national power industries in Korea.

Analysis and Implementation of High Speed Data Processing Technology using Multi-Message Chain and Double Buffering Method with MIL-STD-1553B (MIL-STD-1553B 통신의 다중 메시지 체인과 더블 버퍼링 방식을 적용한 고속 데이터 처리기술 분석 및 구현)

  • Kim, Ki-Pyo;Ahn, Kee-Hyun;Kwon, Yong-Sung;Yun, Seok-Jae;Lee, Sang-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.422-429
    • /
    • 2013
  • MIL-STD-1553B communication is globally used in the area of aerospace and defense which require safety and reliability in spite of its low communication speed. As recently increased requirements for high precision and robust guidance ability of missiles, missile sensor equipment needs more data to satisfy those requirements. Therefore, missile systems to adopt MIL-STD-1553B requires higher data transfer and processing capability than those of the current systems. In this paper, we describe the result of analysis and implementation of the existing methods that applied multi-message chain and double buffers to improve the current missile system.

Device Optimization of N-Channel MOSFETs with Lateral Asymmetric Channel Doping Profiles

  • Baek, Ki-Ju;Kim, Jun-Kyu;Kim, Yeong-Seuk;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • In this paper, we discuss design considerations for an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a lateral asymmetric channel (LAC) doping profile. We employed a $0.35\;{\mu}m$ standard complementary MOSFET process for fabrication of the devices. The gates to the LAC doping overlap lengths were 0.5, 1.0, and $1.5\;{\mu}m$. The drain current ($I_{ON}$), transconductance ($g_m$), substrate current ($i_{SUB}$), drain to source leakage current ($i_{OFF}$), and channel-hot-electron (CHE) reliability characteristics were taken into account for optimum device design. The LAC devices with shorter overlap lengths demonstrated improved $I_{ON}$ and $g_m$ characteristics. On the other hand, the LAC devices with longer overlap lengths demonstrated improved CHE degradation and $I_{OFF}$ characteristics.