• Title/Summary/Keyword: Aerospace Flight Vehicle

Search Result 277, Processing Time 0.023 seconds

Design of a Track Guidance Algorithm for Formation Flight of UAVs (무인기의 편대비행을 위한 트랙유도 알고리즘 설계)

  • Lee, Dongwoo;Lee, Jaehyun;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper presents a modified track guidance algorithm for formation flight of multiple UAVs. The suggested guidance algorithm is the spatial version of the first order dynamic characteristics for a time-dependent system so the algorithm is able to generate a path without overshoot to track the desired line. A crucial design parameter is a spatial constant that controls the shape of the convergence to an assigned flight path similarly to a time constant. Reference flight trajectories are designed based on a two-dimensional vehicle model, and the performance of the proposed guidance law is verified by numerical simulation using rigid body UAV dynamics with MATLAB/Simulink Aerosim Blockset.

Automatic Flight Control System Development for Optionally Piloted Vehicle (유무인 겸용 비행체의 자동비행조종시스템 개발)

  • Lee, Sangjong;Choi, Hyoung Sik;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.968-973
    • /
    • 2014
  • Optionally Piloted Vehicle is one of the UAV development technology and method, which can provide the economic and efficient unmanned system. Existing manned aircraft is evaluated through much flight operations and it can supply the reliable aircraft platform, engine and subsystems for operation. In addition, OPV can be operated both manned and unmanned vehicle to satisfy the mission requirement. under the certain flight conditions. This paper describes main development procedures for automatic flight control system of OPV and summarizes the technical issues and results.

A Study on the Characteristics of Lightning Detection over the Naro Space Center (나로우주센터 상공의 낙뢰 발생 특성 연구)

  • Kim, Hong-Il;Choi, Eun-Ho;Suh, Sung-Ho;Seo, Seong-Gyu
    • Journal of Environmental Science International
    • /
    • v.31 no.7
    • /
    • pp.543-553
    • /
    • 2022
  • The latest aerospace technology is important for the stable flight of a launch vehicle, but weather conditions on the day of launch are also one of the essential factors for successful launch campaign. If a launch vehicle is directly struck while preparing to take off from the launch pad on the day of launch or the electronic device are damaged by induced current during flight of the launch vehicle, this means launch failure and can lead to enormous national loss. Therefore, for a successful launch campaign, it is necessary to analyze the lightning detection characteristics of the Naro Space Center. In this study, the seasonal factors of the lightning that occurred over the Naro Space Center from 2003 to 2017, the influence of the polarity, and the correlation with the lightning intensity was confirmed. As a result, there was a high probability of intensive occurrence of multiple lightning strikes in summer, and a high proportion of positive (+) lightning strikes in winter. Lastly, in the distribution of the number of lightning strikes, an average of 2.0 to 2.5 negative (-) lightning strikes occurs in the coastal regions of the South and West Seas when one flash happens.

Design of Navigation System for Low Cost Unmanned Aerial Vehicle (저가형 무인항공기 운용을 위한 항법시스템 설계)

  • Lee, Jang-Ho;Kim, Sung-Pil;Park, Mu-Hyeok;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • This paper describes the design of navigation system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of navigation for low cost unmanned aerial vehicle, unmanned target drone as our test bed in this paper is verified by both Hardware in the loop simulation(HILS) to test performance of GPS as GPS output frequency high and results of flight test.

  • PDF

Development of Flight Safety Analysis System for Space Launch Vehicle (우주발사체 비행안전 분석시스템 개발)

  • Choi, Kyu-Sung;Ko, Jeong-Hwan;Sim, Hyung-Seok;Rho, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.123-130
    • /
    • 2008
  • Flight safety analysis, which includes risk estimation for the various abnormal flight modes in addition to normal flight, has to be performed necessarily to guarantee launch safety for the operation of space launch vehicles. For this purpose, a dedicated system has been developed such that all the necessary repetitive computations, result reports, and graphical presentations can be performed inside a single system for user convenience. In addition, the developed system is capable of representing computed results on a three dimensional Earth for the realistic presentation. The developed Flight Safety Analysis System will be employed for the launch operation of Korea Satellite Launch Vehicle-I.

  • PDF

One optimization on the flight trajectories of re-entry vehicle

  • Takano, Hiroyuki;Nakamura, Kazuki;Baba, Yoriaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.307-310
    • /
    • 1996
  • In this paper, we deal with some numerical analyses of a re-entry vehicle in a 2-dimensional plane as an optimal control problem. To reduce the dynamic load, the heat load and the oscillation in the trajectory, we researched the trajectories in which the load factor or the rate of flight path angle was minimized during re-entry. In addition to that, taking advantage of the monotonous subarc method and the folded time-axis method, we tried to find the heat-less and load-less trajectory with combinations of some sectional functionals so that we can achieve more comfortability.

  • PDF

Development of Low-Cost Automatic Flight Control System for an Unmanned Target Drone (무인표적기용 저가형 자동비행시스템 개발)

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • This paper deals with the automatic flight control system for an unmanned target drone which is operated by an army as an anti-air gun shooting training. By automation of unmanned target drone that is manually operated by external pilot, pilot can reduce workload and an army can reduce the budget. Most UAVs which are developed until today use high-cost sensors as AHRS and IMU to measure the attitude, but those are contradictory for the reduction of budget. This paper says the development of low-cost automatic flight control system which makes possible of automatic flight with low-cost sensors. We have developed the integrated automatic flight control system by integrating electricity module, switching module, monitoring module and RC receiver as an one module. We also prove the performance of automatic flight control system by flight test.

  • PDF

Flight Control Test of Quadrotor-Plane with Hybrid Flight Mode of VTOL and Fast Maneuverability (Hybrid 비행 모드를 갖는 Quadrotor-Plane의 비행제어실험)

  • Kim, Dong-Gyun;Lee, Byoungjin;Lee, Young Jae;Sung, Sangkyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.759-765
    • /
    • 2016
  • This paper presents the principle, dynamics modeling and control, hardware implementation, and flight test result of a hybrid-type unmanned aerial vehicle (UAV). The proposed UAV was designed to provide both hovering and fixed-wing type aerodynamic flight modes. The UAV's flight mode transition was achieved through the attitude transformation in pitch axis, which avoids a complex rotor tilt mechanism from a structural and control viewpoint. To achieve this, a different navigation coordinate was introduced that avoids the gimbal lock in pitch singularity point. Attitude and guidance control algorithms were developed for the flight control system. For flight test purposes, a quadrotor attached with a tailless fixed-wing structure was manufactured. An onboard flight control computer was designed to realize the navigation and control algorithms and the UAV's performance was verified through the outdoor flight tests.

Experimental Framework for Controller Design of a Rotorcraft Unmanned Aerial Vehicle Using Multi-Camera System

  • Oh, Hyon-Dong;Won, Dae-Yeon;Huh, Sung-Sik;Shim, David Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.69-79
    • /
    • 2010
  • This paper describes the experimental framework for the control system design and validation of a rotorcraft unmanned aerial vehicle (UAV). Our approach follows the general procedure of nonlinear modeling, linear controller design, nonlinear simulation and flight test but uses an indoor-installed multi-camera system, which can provide full 6-degree of freedom (DOF) navigation information with high accuracy, to overcome the limitation of an outdoor flight experiment. In addition, a 3-DOF flying mill is used for the performance validation of the attitude control, which considers the characteristics of the multi-rotor type rotorcraft UAV. Our framework is applied to the design and mathematical modeling of the control system for a quad-rotor UAV, which was selected as the test-bed vehicle, and the controller design using the classical proportional-integral-derivative control method is explained. The experimental results showed that the proposed approach can be viewed as a successful tool in developing the controller of new rotorcraft UAVs with reduced cost and time.

Development and Flight Test of Educational Water Rocket CULV-1 for Implementation of Launch Vehicle Separation Sequence and Imaging Data Acquisition (발사체 분리과정모사 및 단계별 영상획득이 가능한 교육용 물로켓 CULV-1 개발 및 비행시험)

  • Lee, Myeongjae;Park, Taeyong;Kang, Soojin;Jang, Sueun;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.14-21
    • /
    • 2016
  • In this study, we proposed a water rocket CULV-1 (Chosun University Launch Vehicle-1). Unlike a conventional water rocket, CULV-1 can perform the booster rocket, fairing, and payload separation like an actual launch vehicle and also the imaging data acquisition. The conceptual and critical design of the proposed CULV-1 have been performed considering the operation characteristics. The verification tests have been performed from subsystem to system level in accordance with the established test specifications and verification procedures. Through the final launch test of the flight model, we have verified the design effectiveness of the proposed separation mechanisms for water rocket applications and the mission requirements of the CULV-1 also have been complied.