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Abstract

In this paper, we deal with some numerical
analyses of a re-entry vehicle in a 2-dimensional
plane as an optimal control problem. To reduce the
dynamic load, the heat load and the oscillation in
the trajectory, we researched the trajectories in
which the load factor or the rate of flight path
angle was minimized during reentry. In addition to
that, taking advantage of the monotonous subarc
method and the folded time-axis method, we tried to
find the heat-less and load-less trajectory with
combinations of some sectional functionals so that
we can achieve more comfortability.

Nomenclature
a : speed of sound at sea level
A : wing area (wetted)
Cp : drag coefficient
CDO : zero lift drag coefficient
CL . lift coefficient
D : drag
g : acceleration of gravity
h : altitude
I,J : functional
K : induced drag coefficient
L : Lift
m : mass of re-entry vehicle
Mach : Mach number (V/a)
n : load factor
q : heat rate
t : time
Ug : dummy control
Vv : velocity
w : weight of re-entry vehicle at sea level
Y : flight path angle
v} : longitude
7} : gravity constant
v : heat rate factor
P : atmospheric density
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T : normalized time
Subscripts
1 :normalized final value

f
i :initial value

Jo :normalized initial value
: final value

(

()
()
()
( )max : maximum value

1. Introduction

During the reentry, the heat and the load are
critical to the body hecause of several orders of
density change with height and radical deceleration
from semi-circular speed to less than Mach 10. In
this period, radio communication is not available
because of the Black Out. So it is necessary to
provide the desirable trajectory for the mission in
advance.

The purpose of our study is not only to seek the
trajectory which reduces the dynamic load and heat
transferred to the body but also to find more
comfortable flight so that people can enjoy space
travels without special training in the future. As a
step for the comfortability, numerical calculations
formulated in Sec. 3 with a method for the optimal
control presented in Sec. 2 are attempted. We show
the numerical results of load-minimum flight and
gamma rateminimum flight with heat constraint,
and the trajectories with some sectional functionals
in sec. 4. Some conclusions then are presented in
Sec. 5.

2. The Optimal Control Problem

2.1 The General Problem

The purpose of this problem is to find the state
x(T), control #(T), and the parameter & so that the
functional

I= [ flarum,1) dv + [R(z0),m)] o+ g1, (1)



is minmized, which satisfies the differential
constraints, i.e., the equations of motion,

r—-pxunxt)=0, Ostsl 2)
the non-differential constraints,

S(x,uxt)=0, O=<t=<1 (3)
and the boundary conditions,
¥0) = given, [o(2(0),7)], =0, [¥(x,m)], =0

with X(0)" = {y(0),2(0)}", 4)

where 2(0) is unknown initial state variable.

Using variable Lagrange multipliers A(T), p(r),
and constant multiplier ¢, W, equation(l) can be
transformed into an augmented functional

J =f [f + AT(E — @) + pT S] d
+(h+ oTw), + (8 +u"¥),
=f (~Ax+ f-AT@+p'S) dt

T (-A"x+ I+ o"w), HA X +g +p"y), . (5)
From the calculus of variations or the optimal
control theory, functions x(t), u(t), x; and
multipliers A(t),p(t), 0 and p must satisfy
following optimality conditions.
A-f.+\Tp —pTS_=0,
fu—}"Tq)u+stu=O’
1
f (fx=N@.+p"S)dv
0
+ (hx + owa)O + (gx + MT'px)l = 0 (8)
(-C+h,+0"w),=0 9)
A"+, +u"p), =0 (10)

where &(t) is the component of A(T) associated
with z(T).

O<tx<1, 6)
O<ts<1, (7)

2.2 State Variable Constraints
Generally speaking, it is difficult to solve optimal
control problems with state variable constraints '
S$=5(x1t)=0 (11)
instead of eq.(3). To solve eqs(2)-(4) and egs.(6)-
(10) as a two-point boundary value problem, we
must solve egs.(3) and (7) for u and p to substitute
them into eqs{2) and (6), however, because of the
lack of controls in eq.(11), we cannot solve them.
As the techniques to cope with the problem
mentioned above, we used the folded time axis
method to multi-point boundary value
problem as a two-point boundary value problem,
and the monotonous subarc method not only keeps

solve

state variables within the borderline but also holds
8§ either positive or negative with additional
constraints,

S=Sxuat)yxU; =0 (12)

3. Formulation of the Re-entry
In this paper, the re-entry vehicle is represented
as a point mass space shuttle-like space plane
which re-emters the Earth’s atmosphere in the
vertical plane.

3.1 Equations of Motion

We consider a geocentric polar coordinate
system illustrated in Fig.1 {In this figure, the Earth
is non-rotating, spheric body). Therefore, equations
of motion of the re-entry vehicle are as follows,

h=Vsiny (13)
6 =‘1/Q(;0+Shy (14)
V:—gsiny—ﬂz,‘;:;—cl2 (15)
A s

where /1, 8, V, ¥ are state valuables, and 2 denotes
dh/dt. We employed Ci as a control variable, and
the equality constraint is

§=C,~C paxsinl,=0, 17)
The atmospheric density is described as
p=pe Pt (18)
and the acceleration due to gravity is
- L 19
8= R, +h) (19)
and the drag coefficient is
Cp=Cp,+KC*. (20)

The constants for the equations are
A=250m2, m=89930kg, CD0=O.O4, K=1.2,Rg=6378km,

p=0.398x 10" *m/s, py=1.39kgm3. $=1/7162m'!

The EARTH }l
Fig.1 Coordinate System
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3.2 Characteristics of
Approximate solutions
The results of calculation of fixed control
Cy/Cp for yo=-3deg. are shown in Fig.2. Here,
load factor

n= /(&) + E* (21)
and heat rate is normalized using V as
q=vJpV:. (22)

In Fig 2, we can easily recognize that the flat
trajectory with smaller value of Cr/Cp does not
descent to our final conditions: b= 50km and V;=
Mach 10, and if the Cy/Cp is larger, total heat
becomes much amount and we cannot avoid
oscillations in the trajectory.

120

|
:

Altitude (Km)

10, 15 25
Velocity (Mach) 20

Fig.2 h-V (C/C,=const.)

4. Numerical Results

4.1 Trajectories with Heat Constraints
In this section, the total load- minimum flight and
the total gamma rate-minimum flight with a heat
constraint are considered. Using the monotonous
subarc method, the heat constraint is imposed as

s=Lv- VYL U2 =0 (23)
The functionals, to be minimized, are

1= [T 12 ar, (24)

and

t
I= (y2) dt .

1

(25)

And the boundary conditions are
h,=120km 6,=0deg y,=-3deg

and V;is associated with ¥, by

v = 2b(b—-1) . p

‘ b*—<cos (y,)? Reth

R+ h, _
F}::TTIT‘ h,=300km , (26)
h;=50km V,=Machl0 O,: free y,: free .

with &=

To solve this problem, SCGRAD and MQAZ2) are
applied.

The results of the total load-minimum flight are
shown in Figs. 3-5 and the results for the gamma
rate minimum flight are plotted in Figs. 6-8.

120 T T T
110 oo = = gmax=1.0
= gmnxﬂo.7
g 100 E=.... qmax=0.5
¢ 90 1
3 80
'.;:" 70 >
i W
60 L L 1 Lo-dfy
s0 r i i ~d

10 12 4 16 18
clocity (Mach

Fig. 3 h-V (n min)

O 22 24

~ - «~ gmax=1.0
& ——e qriax=0.7 B
u wasnnse 1% =0.5
g
g LAY
£ 0.6 F- B i /]
3 2 A
3 - A
1 L
i
800 1200 1600
Time (sec)
Fig. 4 Load Factor (n min)
1.2 3 : Y T
L [ =1.0
g 1 v —g:;::w.; g
. N —qm-o‘
go.a e
s 1
JosE \
o4 AL
NIAY Ve
o2 7 “ﬁq"\a"‘\” #
o 1 i
[o] 400 800 1200 1600
Time (sec)
Fig. 5 Heat Rate (n min)
120=...!...!...!......... T
~ 110 ;— J— qmlx:(l).g
5 100 f— gm¥=o:5
3 90 E
E A
g °°F
2 70 F - 4 R W . ®
< eof ,..-‘"" ¥
: . oot ¥ 4
50 “c“ i -

10 12 14 16 18 20 22 24
Velocity (Mach)
Fig. 6 h-V (gamma rate min)

1.4 E. pp——r]
. —— gmax=0.7H . 4
1.2 _gmax=0.5

Load Factor (g)
o
o

o] 400 800 1200
Time (sec)
Fig. 7 Load Factor (gamma rate min)

1600

309



1.2 d 1 I
o i — = qmax=1.0
TE-M qmax=07
5 0.8 frtn; —ax=0.5 Y
s O-6F h\ %
% 0.4 b+ ¢
0.2 F \\ —
S ‘ A
o i
(o] 400 800 1200 1600

Time (sec)
Fig. 8 Heat Rate (gamma rate min)

Figs 3-8 show that the smaller heat maximum is,
the smaller the total heat is, and that the trajectory
is flatter with the gamma rate minimum flight.

4.2 An Application to
the Folded Time-Axis Method

As an application of the folded time axis method,
we divide the trajectory into three regimes of the
time axis so that we can set a functional to each
regime separately (see Fig. 9). For Regime-1, the
rate of altitude & is selected as functional, and for
Regime-2 and 3, the total load or the total gamma
rate is applied. The results are arranged in Figs
10-12.
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Figs. 10-12 show that the maximum heat rate is
small while the change of the load factor and the
heat rate is small. The trajectory is flatter with the
gamma rate minimum flight.

5. Conclusions

In order to reduce the heat and the load, it is
fairly useful to impose functionals as the total load
factor or the total gamma rate with the heat
maximum constraint. And with respect to the
flatness on the trajectories, the total gamma rate
minimum flight is preferable. And the trial with
the combined sectional functionals which are the
altitude rate and the gamma rate is effective to
flatten the trajectory with the small maximum heat
rate.

In comparison with the results in section 4.1 and
section 4.2, the approach with combined sectional
functionals is more desirable with respect to the
flatness of the trajectory and the change of the load
factor and the heat rate. And it is important to
impose the appropriate functionals because the
results depend on the combination and the weight to
each functional.
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