• Title/Summary/Keyword: Aerosol-deposition process

Search Result 59, Processing Time 0.022 seconds

Room temperature-processed TiO2 coated photoelectrodes for dye-sensitized solar cells

  • Kim, Dae-gun;Lee, Kyung-min;Lee, Hyung-bok;Lim, Jong-woo;Park, Jae-hyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.61-65
    • /
    • 2020
  • The depletion of fossil fuels and the increase in environmental awareness have led to greater interest in renewable energy. In particular, solar cells have attracted attention because they can convert an infinite amount of solar energy into electricity. Dye-sensitize solar cells (DSSCs) are low cost third generation solar cells that can be manufactured using environmentally friendly materials. However, DSSC photoelectrodes are generally produced by screen printing, which requires high temperature heat treatment, and low temperature processes that can be used to produce flexible DSSCs are limited. To overcome these temperature limitations, this study fabricated photoelectrodes using room-temperature aerosol deposition. The resulting DSSCs had an energy conversion efficiency of 4.07 %. This shows that it is possible to produce DSSCs and flexible devices using room-temperature processes.

Study of Humidity Sensing Properties Related to Metal Content of Aerosol Deposited Ceramic/Metal Composite Films (에어로졸 증착한 세라믹/금속 복합막의 금속 함량에 따른 습도 감지 특성 연구)

  • Kim, Ik-Soo;Koo, Sang-Mo;Park, Chulhwan;Shin, Weon Ho;Lee, Dong-Won;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.314-320
    • /
    • 2021
  • Controlling ambient humid condition through high performance humidity sensors has become important for various fields, including industrial process, food storage, and the preservation of historic remains. Although aerosol deposited humidity sensors using ceramic BaTiO3 (BT) material have been widely studied because of their longtime stability, there remain critical disadvantages, such as low sensitivity, low linearity, and slow response/recovery time in case of the sensors fabricated at room temperature. To achieve superior humidity sensing properties even at room temperature condition, BT-Cu composite films utilizing aerosol deposition (AD) process have been proposed based on the percolation theory. The BT-Cu composite films showed gradually improved sensing properties until the Cu concentration reached 15 wt% in the composite film. However, the excessive Cu (above 30 wt%) containing BT-Cu composite films showed a rapid decrease of the sensing properties. The results of observed surface morphology of the AD fabricated composite films, to figure out the metal filler effect, showed correlation between surface topography as well as size and the amount of open pores according to the metal filler content. Overall, it is very important not only dielectric constant of the humidity sensing films but also microstructures, because they affect either the variation range of capacitance by ambient humidity or adsorption/desorption of ambient humidity onto/from the humidity sensing films.

Single Crystal Growth Behavior in High-Density Nano-Sized Aerosol Deposited Films

  • Lim, Ji-Ho;Kim, Seung-Wook;Kim, Samjung;Kang, Eun-Young;Lee, Min Lyul;Samal, Sneha;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.488-495
    • /
    • 2021
  • Solid state grain growth (SSCG) is a method of growing large single crystals from seed single crystals by abnormal grain growth in a small-grained matrix. During grain growth, pores are often trapped in the matrix and remain in single crystals. Aerosol deposition (AD) is a method of manufacturing films with almost full density from nano grains by causing high energy collision between substrates and ceramic powders. AD and SSCG are used to grow single crystals with few pores. BaTiO3 films are coated on (100) SrTiO3 seeds by AD. To generate grain growth, BaTiO3 films are heated to 1,300 ℃ and held for 10 h, and entire films are grown as single crystals. The condition of grain growth driving force is ∆Gmax < ∆Gc ≤ ∆Gseed. On the other hand, the condition of grain growth driving force in BaTiO3 AD films heat-treated at 1,100 and 1,200 ℃ is ∆Gc < ∆Gmax, and single crystals are not grown.

A Study on the Deposition Characteristics of Ultrafine SiO2 Particles by Temperature Control in Deposition Zone (증착 구간에서의 온도 제어에 따른 SiO2 초미립자의 증착 특성 고찰)

  • You, Soo-Jong;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.157-168
    • /
    • 1996
  • The deposition characteristics of ultrafine $SiO_2$ particles were investigated in a tube furnace reactor theoretically and experimentally controlling tube wall temperature in deposition zone. The model equations such as mass and energy balance equations and aerosol dynamic equations inside reactor and deposition tube were solved to predict the particle growth and deposition. The particle size and deposition efficiencies of $SiO_2$ particles were calculated, changing the process conditions such as tube furnace setting temperature, total gas flow rate inlet $SiCl_4$ concentration and were compared with the experimental results.

  • PDF

A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions

  • Chun, Doo-Man;Kim, Min-Hyeng;Lee, Jae-Chul;Ahn, Sung-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.51-53
    • /
    • 2008
  • A new nano-particle deposition system (NPDS) was developed for a ceramic and metal coating process. Nano- and micro-sized powders were sprayed through a supersonic nozzle at room temperature and low vacuum conditions to create ceramic and metal thin films on metal and polymer substrates without thermal damage. Ceramic titanium dioxide ($TiO_2$) powder was deposited on polyethylene terephthalate substrates and metal tin (Sn) powder was deposited on SUS substrates. Deposition images were obtained and the resulting chemical composition was measured using X-ray photoelectron spectroscopy. The test results demonstrated that the new NPDS provides a noble coating method for ceramic and metal materials.

A study on the $YBa_{2}Cu_{3}O_{x}$ phase deposition by liquid aerosol PECVD (미립액상 분말에 의한 $YBa_{2}Cu_{3}O_{x}$ 초전도체의 PECVD 증착법)

  • 정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.229-237
    • /
    • 1996
  • The superconducting phase, $YBa_{2}Cu_{3}O_{x}$ (YBCO), was in-situ deposited on the single crystal MgO substrates, using an aerosol decomposition process in a cold plasma reactor. The solubility and decomposition temperature of the chemical precursors, and the vapor pressures of the solvents, were determined to be the factors crucial to achieving a stoichiometric, crystalline YBCO phase. The deposition parameters for the YBCO phase were 0.3 to 2.7 kPa for the oxygen partial pressure and $800^{\circ}C$ to $940^{\circ}C$ for the substrate temperature. The optimum deposition conditions for the YBCO phase were observed along the CuO decomposition line.

  • PDF

Real-time Contaminant Particle Monitoring for Chemical Vapor Deposition of Borophosphosilicate and Phosphosilicate Glass Film by using In-situ Particle Monitor and Particle Beam Mass Spectrometer (ISPM 및 PBMS를 이용한 BPSG 및 PSG CVD 공정 중 발생하는 오염입자의 실시간 측정)

  • Na, Jeong Gil;Choi, Jae Boong;Moon, Ji Hoon;Lim, Sung Kyu;Park, Sang Hyun;Yi, Hun Jung;Chae, Seung Ki;Yun, Ju Young;Kang, Sang Woo;Kim, Tae Sung
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2010
  • In this study, we investigated the particle formation during the deposition of borophosphosilicate glass (BPSG) and phosphosilicate glass (PSG) films in thermal chemical vapor deposition reactor using in-situ particle monitor (ISPM) and particle beam mass spectrometer (PBMS) which installed in the reactor exhaust line. The particle current and number count are monitored at set-up, stabilize, deposition, purge and pumping process step in real-time. The particle number distribution at stabilize step was measured using PBMS and compared with SEM image data. The PBMS and SEM analysis data shows the 110 nm and 80 nm of mode diameter for BPSG and PSG process, respectively.

Fabrication and Characterization of Multi-layered Thick Films by Room Temperature Powder Spray in Vacuum Process (상온 진공 분말 분사 공정을 이용한 다층 박막 소재의 제조 및 전기적 특성)

  • Ryu, Jung-Ho;Ahn, Cheol-Woo;Kim, Jong-Woo;Choi, Jong-Jin;Yoon, Woon-Ha;Hahn, Byung-Dong;Choi, Joon-Hwan;Park, Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.584-592
    • /
    • 2012
  • Room temperature powder spray in vacuum process, so called Aerosol deposition (AD) is a room temperature (RT) process to fabricate thick and dense ceramic films, based on collision of solid ceramic particles. This technique can provide crack-free dense thin and thick films with thicknesses ranging from sub micrometer to several hundred micrometers with very fast deposition rates at RT. In addition, this technique is using solid particles to form the ceramic films at RT, thus there is few limitation of the substrate and easy to control the compositions of the films. In this article, we review the progress made in synthesis of piezoelectric thin/thick films, multi-layer structures, NTC thermistor thin/thick films, oxide electrode thin films for actuators or sensor applications by AD at Korea Institute of Materials Science (KIMS) during the last 4 years.

Dielectric Properties of Al2O3 Thick Films Grown by Aerosol Deposition Method (에어로졸 데포지션법으로 성막된 Al2O3 후막의 유전특성)

  • Park, Jae-Chang;Yoon, Young-Joon;Kim, Hyo-Tae;Koo, Eun-Hae;Nam, Song-Min;Kim, Jong-Hee;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.411-417
    • /
    • 2008
  • Aerosol Deposition Method (ADM) is a novel technique to grow ceramic thick films with high density and nano-crystal structure at room temperature. $^{1,2)}$ For these unique advantages of ADM, it would be applied to the fabrication process of 3-D integration ceramic modules effectively. However, it is critical to control the properties of starting powders, because a film formation through ADM is achieved by impaction and consolidation of starting powders on the substrates. We fabricated alumina thick films by ADM for the application to integral substrates for RF modules. When the as-received alumina powders were used as a starting material without any treatments, it was observed that the dielectric properties of as-deposited alumina films, such as relative permittivity and loss tangent, showed high dependency on the frequency. In this study, some techniques of powder pre-treatments to improve the dielectric properties of alumina thick films will be shown and the effects of starting powders on the properties of AD films will be discussed.

Morphological control and electrostatic deposition of silver nanoparticles produced by condensation-evaporation method (증발-응축법에 의해 발생된 은(silver) 나노입자의 구조제어 및 전기적 부착 특성 연구)

  • Kim, Whidong;Ahn, Ji Young;Kim, Soo Hyung
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2009
  • This paper describes a condensation-evaporation method (CEM) to produce size-controlled spherical silver nanoparticles by perturbing coagulation and coalescence processes in the gas phase. Polydisperse silver nanoparticles generated by the CEM were first introduced into a differential mobility analyzer (DMA) to select a group of silver nanoparticles with same electrical mobility, which also enables to make a group of nanoparticles with elongated structures and same projected area. These silver nanoparticles selected by the DMA were then in-situ sintered at ${\sim}600^{\circ}C$, and then they were observed to turn into spherical shaped nanoparticles by the rapid coalescence process. With the assistance of modified converging-typed quartz reactor, we can also produce the 10 times higher number concentration of silver nanoparticles compared with a general quartz reactor with uniform diameter. Finally, the spherical silver nanoparticles with 30 nm were electrostatically deposited on the surface of silicon substrate with the coverage rate of ~4%/hr. This useful preparation method of size-controlled monodisperse silver nanoparticles developed in this work can be applied to the various studies for characterizing the physical, chemical, optical, and biological properties of nanoparticles as a function of their size.

  • PDF