• 제목/요약/키워드: Aerodynamic Shape

검색결과 405건 처리시간 0.024초

저압상태에서 공기역학적 렌즈를 이용한 입자 빔의 생성 및 크기 제어 (Generation and Size Control of Particle Beams at Low Pressures Using Aerodynamic Lenses)

  • 배귀남
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1320-1326
    • /
    • 1999
  • Since it is not possible to generate spatially uniform particle distribution at low pressures in which in-situ particle monitors(ISPMs) are normally operated, it is of interest to investigate the response of an ISPM to particle beams at low pressures. The purpose of this study is to develop technique that can control the size of particle beams. In this study, particle beams were generated at low pressures by using identical aerodynamic lenses, and their shape and size were visualized by collecting uniform sized methylene blue aerosol particles on a filter media. It was found that the size of particle beams depends on the number of lens, the distance between lenses, and the downstream distance from the final lens. The size of particle beams decreases with increasing distance between lenses, and increases with increasing downstream distance from the final lens. The experimental results obtained in this work will be used to investigate performance of an ISPM at low pressures.

Aeroelastic investigation of a composite wind turbine blade

  • Rafiee, Roham;Fakoor, Mahdi
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.671-680
    • /
    • 2013
  • Static aeroelastic is investigated in a wind turbine blade. Imposed to different loadings, the very long and flexible structures of blades experience some changes in its preliminary geometry. This results in variations of aerodynamic loadings. An iterative approach is developed to study the interactions between structure and aerodynamics evaluating variations in induced stresses in presence of aeroelasticity phenomenon for a specific wind turbine blade. A 3D finite element model of the blade is constructed. Aerodynamic loading is applied to the model and deflected shape is extracted. Then, aerodynamic loadings are updated in accordance with the new geometry of the deflected blade. This process is repeated till the convergence is met. Different operational conditions consisting of stand-by, start-up, power production and normal shut-down events are investigated. It is revealed that stress components vary significantly in the event of power production at the rated wind speed; while it is less pronounced for the events of normal shut-down and stand-by.

In-house 코드 POSEIDON을 이용한 5kW급 수평축 풍력발전용 로터 블레이드 형상설계 (Design of 5kW-class Horizontal Axis Wind Turbine using In-house Code POSEIDON)

  • 김기평;김일수;최영도;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.492-492
    • /
    • 2009
  • Nowadays in Republic of Korea, there is no distinct reference for the related design technology of rotor blade of wind turbine. Therefore the optimum design and evaluation of performance is carried out with foreign commercial code softwares. This paper shows in-house code software that evaluates the aerodynamic design of wind turbine rotor blade using blade element-momentum theory (BEMT) and processes that is applied through various aerodynamics theories such as momentum theory, blade element theory, prandtl's tip loss theory and strip theory. This paper presents the results of the numerical analysis such as distribution of aerodynamic properties and performance curves using in-house code POSEIDON.

  • PDF

핀틀 형상이 가변 노즐목 핀틀 추력기의 노즐 유동에 미치는 영향 (Effects of Pintle Shape on Nozzle Flow Characteristics of Variable Nozzle Throat Area Pintle Thrusters)

  • 이용우;허환일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.275-278
    • /
    • 2010
  • 핀틀형 추력기는 운용 도중에 노즐목 면적을 변경시켜 고체추진기관과 같은 추력기를 액체 추진기관과 같이 추력을 자유자재로 조절할 수 있다. 본 논문에서는 SNECMA사(社)에서 개발한 Divert용 핀틀추력기의 핀틀의 형상 변화에 대해 수치해석 기법으로 분석하였다. Bore에 의하여 핀틀 구동시 받게되는 핀틀의 하중은 줄어들었고, 핀틀 형상에 따라 유동장이 크게 변하는걸 확인하였다.

  • PDF

수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구 (A Study on Design of Wind Turbine Blade and Aerodynamic Analysis)

  • 김정환;김범석;윤수한;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

Wind-induced response and loads for the Confederation Bridge -Part II: derivation of wind loads

  • Bakht, Bilal;King, J. Peter C.;Bartlett, F.M.
    • Wind and Structures
    • /
    • 제16권4호
    • /
    • pp.393-409
    • /
    • 2013
  • This paper uses ten years of on-site monitoring data for the Confederation Bridge to derive wind loads and investigate whether the bridge has experienced its design wind force effects since its completion in 1997. The load effects derived using loads from the on-site monitoring data are compared to the load effects derived using loads from the 1994 and 2009 wind tunnel aerodynamic model tests. The research shows, for the first time, that the aerodynamic model-based methodology originally developed in 1994 is a very accurate method for deriving wind loads for structural design. The research also confirms that the bridge has not experienced its specified (i.e., unfactored) wind force effects since it was opened to traffic in 1997, even during the most severe event that has occurred during this period.

포탄의 꼬리날개가 기저항력에 미치는 영향에 대한 해석적 연구 (A Numerical Study on the Effect of the Tail Wing of a Projectile on the Base Drag)

  • 노성현;김종록;방재원
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.625-636
    • /
    • 2019
  • Recently, research on projectiles with wings for precision guidance is actively underway. In this study, we analyzed how the tail fins attached to the projectile affect the base drag. Aerodynamic analysis was performed with RANS(Reynolds Averaged Navier-Stokes) equations using FLUENT, a commercial CFD(Computational Fluid Dynamics) code. Through the aerodynamic analysis, the base drag characteristics of the projectile by parameters (number, length, thickness, position, shape of tail fin) were investigated. The results of this study are expected to be applicable to aerodynamic design of tail fins mounted on projectiles.

Photogrammetry-based reverse engineering method for aircraft airfoils prediction

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.331-344
    • /
    • 2021
  • Airframe internal and external specifications are the product of intensive intellectual efforts and technological breakthroughs distinguishing each aircraft manufacturer. Therefore, geometrical information characterizing aircraft primary aerodynamic surfaces remain classified. When attempting to model real aircraft, many members of the aeronautical community depend on their personal expertise and generic design principles to bypass the confidentiality obstacles and sketch real aircraft airfoils, which therefore vary for the same aircraft due to the different designers' initial assumptions. This paper presents a photogrammetric shape prediction method for deriving geometrical properties of real aircraft airframe by utilizing their publicly accessible static and dynamic visual content. The method is based on extracting the visually distinguishable curves at the fairing regions between aerodynamic surfaces and fuselage. Two case studies on B-29 and B-737 are presented showing how to approximate the sectional coordinates of their wing inboard airfoils and proving the good agreement between the geometrical and aerodynamic properties of the replicated airfoils to their original versions. Therefore, the paper provides a systematic reverse engineering approach that will enhance aircraft conceptual design and flight performance optimization studies.

PARSEC 함수를 이용한 헤어포일의 공력 형상 설계 연구 (A STUDY ON THE AERODYNAMIC SHAPE DESIGN WITH THE PARSEC FUNCTION)

  • 이재훈;정경진;권장혁;안중기
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.88-91
    • /
    • 2007
  • In the shape design optimization of an airfoil, the shape function has been used to find the optimal airfoil shape for given conditions. The parameters determining the airfoil shape are used in the shape design optimization as design variables. However, they usually don't have physical meaning. The PARSEC (Parametric Shapes) function is a recently proposed shape function and its parameters have the physical meaning. In this study the usefulness of the PARSEC is tested for the RAE2822 airfoil in the transonic flow region to reduce the shock strength and the result is compared with Hicks-Henne function. The optimized airfoils reduce the shock strength and they show similar result.

  • PDF

15,000 마력급 원심식 압축기 임펠러 블레이드의 유체-구조 연성해석을 이용한 형상최적설계 (Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis)

  • 강현수;오정수;한정삼
    • 대한기계학회논문집B
    • /
    • 제38권6호
    • /
    • pp.547-556
    • /
    • 2014
  • 본 논문에서는 15,000 마력급 원심식 압축기 임펠러 블레이드에 대한 단방향 유체-구조 연성해석 및 응답표면법을 이용한 형상최적설계를 제시하였다. 임펠러 블레이드의 형상은 공력 성능에 영향을 미칠 뿐만 아니라, 유체의 압력과 원심력에 의한 임펠러의 구조적 안전성에도 큰 영향을 미치므로 유체-구조 연성해석을 함께 고려한 형상최적설계가 필요한 분야이다. 본 논문에서 유체-구조 연성해석의 유체영역과 구조영역을 ANSYS CFX와 Mechanical을 사용하여 각각 해석하였다. 실험계획법을 기반으로 유체 및 구조해석 결과에 대한 응답표면을 생성하여 구조적 안전성 및 압축비를 제한조건으로 하고 임펠러의 효율을 최대화하는 임펠러 블레이드의 형상최적설계를 수행하였다.