• Title/Summary/Keyword: Aerial photogrammetry

Search Result 454, Processing Time 0.037 seconds

Analysis of Three Dimensional Positioning Accuracy of Vectorization Using UAV-Photogrammetry (무인항공사진측량을 이용한 벡터화의 3차원 위치정확도 분석)

  • Lee, Jae One;Kim, Doo Pyo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.525-533
    • /
    • 2019
  • There are two feature collection methods in digital mapping using the UAV (Unmanned Aerial Vehicle) Photogrammetry: vectorization and stereo plotting. In vectorization, planar information is extracted from orthomosaics and elevation value obtained from a DSM (Digital Surface Model) or a DEM (Digital Elevation Model). However, the exact determination of the positional accuracy of 3D features such as ground facilities and buildings is very ambiguous, because the accuracy of vectorizing results has been mainly analyzed using only check points placed on the ground. Thus, this study aims to review the possibility of 3D spatial information acquisition and digital map production of vectorization by analyzing the corner point coordinates of different layers as well as check points. To this end, images were taken by a Phantom 4 (DJI) with 3.6 cm of GSD (Ground Sample Distance) at altitude of 90 m. The outcomes indicate that the horizontal RMSE (Root Mean Square Error) of vectorization method is 0.045 cm, which was calculated from residuals at check point compared with those of the field survey results. It is therefore possible to produce a digital topographic (plane) map of 1:1,000 scale using ortho images. On the other hand, the three-dimensional accuracy of vectorization was 0.068~0.162 m in horizontal and 0.090~1.840 m in vertical RMSE. It is thus difficult to obtain 3D spatial information and 1:1,000 digital map production by using vectorization due to a large error in elevation.

A Study on the 3 Dimensional Precision Analysis of Objects by means of Multiple Close Range Photogrammetry (다중(多重) 근거리사진측정(近距離寫眞測定)에 의한 피사체(被寫體)의 3차원(次元) 정밀해석(精密解析)에 관한 연구(硏究))

  • Kang, Joon Mook;Yeu, Bock Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.109-120
    • /
    • 1985
  • This thesis is a study on multiple close range photogrammetry, and the purpose of this study is to develop the most accurate adjustment method of three dimensional object coordinates. This was achieved by comparing the standard errors of actual data to the computed values from 2 photos and multiple photos. The conventional methods for multiple photos have been analyzed by using geometric model formation. But in this study, the equation of collinearity condition which has been applied to aerial photogrammetry was derived to be a basic principle of close range photogrammetry, and the algorithm for analyzing multiple photos was developed using simultaneous bundle adjustment. The method used in this study, showed more homogeneous accuracy in coordinate and more consistent variance of error than those of conventional methods. It was found that the cases using 3, 4, and 5 photos were more accurate than using 2 photos; the accuracies were improved to 15%, 35%, and 50%, for each case. Thus this study is expected to be useful in measuring the geometry of historic monuments and other structures requiring high accuracy. Also the combined case of multiple photos is considered to be effective for the precise analysis of the objects which are difficult to measure for obstacles.

  • PDF

Accuracy Analysis of Low-cost UAV Photogrammetry for Corridor Mapping (선형 대상지에 대한 저가의 무인항공기 사진측량 정확도 평가)

  • Oh, Jae Hong;Jang, Yeong Jae;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.565-572
    • /
    • 2018
  • Recently, UAVs (Unmanned Aerial Vehicles) or drones have gained popularity for the engineering surveying and mapping because they enable the rapid data acquisition and processing as well as their operation cost is low. The applicable fields become much wider including the topographic monitoring, agriculture, and forestry. It is reported that the high geospatial accuracy is achievable with the drone photogrammetry for many applications. However most studies reported the best achievable mapping results using well-distributed ground control points though some studies investigated the impact of control points on the accuracy. In this study, we focused on the drone mapping of corridors such as roads and pipelines. The distribution and the number of control points along the corridor were diversified for the accuracy assessment. In addition, the effects of the camera self-calibration and the number of the image strips were also studied. The experimental results showed that the biased distribution of ground control points has more negative impact on the accuracy compared to the density of points. The prior camera calibration was favored than the on-the-fly self-calibration that may produce poor positional accuracy for the case of less or biased control points. In addition, increasing the number of strips along the corridor was not helpful to increase the positional accuracy.

Accuracy of Photo Control Points Surveying in ADS40 Image (ADS40영상 사진기준점측량 정확도에 관한 연구)

  • Lee, Jun-Hyuk;Kim, Kyung-Jong;Shin, Jin-Kyu;Lee, Boung-Kil;Lee, Young-Jin
    • Spatial Information Research
    • /
    • v.17 no.2
    • /
    • pp.191-200
    • /
    • 2009
  • Aerial digital camera was used in outside since 2000 because of technical development & improvement of it. In korea, line type or frame type digital camera introduced since 2006 was used in manufacture and Correction of National base map appling the number and distribution of control point of analogue aerial triangulation from 2008. The main objective of the study is to compare and analyze the effects of the number and distribution of control points in accuracy of results, when we execute aerial triangulation with images from ADS40, line type sensored aerial digital camera available in korea. The result of RMSE can be concluded that accuracy of all the case are meet the aerial photograph surveying work regulation of NGI as to horizontal of control point ${\pm}0.068m$, ${\pm}0.073m$, ${\pm}0.071m$, height ${\pm}0.041m$, ${\pm}0.055m$, ${\pm}0.055m$, ${\pm}0.041m$, as to horizontal of check point ${\pm}0.167m$, ${\pm}0.113m$, ${\pm}0.110m$, height ${\pm}0.128m$, ${\pm}0.086m$, ${\pm}0.081m$. We have confirmed that it is possible to make out large scale digital topographic map.

  • PDF

Utilization of Unmanned Aerial Scanner for Investigation and Management of Forest Area (산림지역 조사 및 관리를 위한 무인항공 스캐너의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.189-194
    • /
    • 2019
  • Forest investigation is the basic data for forest preservation and forest resource development, and periodical data acquisition and management have been performed. However, most of the current forest investigations in Korea are surveys to grasp the current status of forests, and various applications have not been made as geospatial information. In this study, the unmanned aerial scanner was used to acquire and process data in the forest area and to present an efficient forest survey method through analysis of the results. Unmanned aerial scanners can extract ground below vegetation, effectively creating DEM for forest management. It can be used as geospatial information for forest investigation and management by generating accurate topographical data that is impossible in conventional photogrammetry. It can also be used to measure distances between power lines and vegetation or manage transmission lines in forest areas. The accurate vertical distance measurement for vegetation surveys can greatly improve the accuracy of labor measurement and work efficiency compared to conventional methods. In the future, the use of unmanned aerial scanners will improve the data acquisition efficiency in forest areas, and will contribute to improved accuracy and economic feasibility compared to conventional methods.

Utilization of UAV and GIS for Efficient Agricultural Area Survey (효율적인 농업면적 조사를 위한 무인항공기와 GIS의 활용)

  • Jeong, Woo-Chul;Kim, Sung-Bo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.201-207
    • /
    • 2020
  • In this study, the practicality of unmanned aerial vehicle photography information was identified. Therefore, a total of four consecutive surveys were conducted on the field-level survey areas among the areas subject to photography using unmanned aerial vehicles, and the changes in crop conditions were analyzed using pictures of unmanned aerial vehicles taken during each survey. It is appropriate to collect and utilize photographic information by directly taking pictures of the survey area according to the time of the on-site survey using unmanned aerial vehicles in the field layer, which is an area where many changes in topography, crop vegetation, and crop types are expected. And it turned out that it was appropriate to utilize satellite images in consideration of economic and efficient aspects in relatively unchanged rice paddies and facilities. If the survey area is well equipped with systems for crop cultivation, deep learning can be utilized in real time by utilizing libraries after obtaining photographic data for a certain area using unmanned aircraft in the future. Through this process, it is believed that it can be used to analyze the overall crop and shipment volume by identifying the crop status and surveying the quantity per unit area.

Assessment of Positioning Accuracy of UAV Photogrammetry based on RTK-GPS (RTK-GPS 무인항공사진측량의 위치결정 정확도 평가)

  • Lee, Jae-One;Sung, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.63-68
    • /
    • 2018
  • The establishment of Ground Control Points (GCPs) in UAV-Photogrammetry is a working process that requires the most time and expenditure. Recently, the rapid developments of navigation sensors and communication technologies have enabled Unmanned Aerial Vehicles (UAVs) to conduct photogrammetric mapping without using GCP because of the availability of new methods such as RTK (Real Time Kinematic) and PPK (Post Processed Kinematic) technology. In this study, an experiment was conducted to evaluate the potential of RTK-UAV mapping with no GCPs compared to that of non RTK-UAV mapping. The positioning accuracy results produced by images obtained simultaneously from the two different types of UAVs were compared and analyzed. One was a RTK-UAV without GCPs and the other was a non RTK-UAV with different numbers of GCPs. The images were taken with a Canon IXUS 127 camera (focal length 4.3mm, pixel size $1.3{\mu}m$) at a flying height of approximately 160m, corresponding to a nominal GSD of approximately 4.7cm. As a result, the RMSE (planimetric/vertical) of positional accuracy according to the number of GCPs by the non-RTK method was 4.8cm/8.2cm with 5 GCPs, 5.4cm/10.3cm with 4 GCPs, and 6.2cm/12.0cm with 3 GCPs. In the case of non RTK-UAV photogrammetry with no GCP, the positioning accuracy was decreased greatly to approximately 112.9 cm and 204.6 cm in the horizontal and vertical coordinates, respectively. On the other hand, in the case of the RTK method with no ground control point, the errors in the planimetric and vertical position coordinates were reduced remarkably to 13.1cm and 15.7cm, respectively, compared to the non-RTK method. Overall, UAV photogrammetry supported by RTK-GPS technology, enabling precise positioning without a control point, is expected to be useful in the field of spatial information in the future.

Acquisition of Large Scale Geographical Information by Remote Control of Non-Metric Camera (비측정용 카메라의 원격조종에 의한 대축척 지형정보 획득)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Bae, Yeon-Soung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.177-184
    • /
    • 1993
  • To obtain large scale precise geographical information in local area we determined external orientation parameters of camn exactly and conducted aerial photography using remote control airship loaded 35mm non-metric camera that produced systematic error coefficients. Ground control Points were determined by differential GPS. Therefore we can try to improve accuracy and economical efficiency. Also, it is suggested that remote control airship photogrammetry can be applied to make large scale topographic map using analytical plotter as calibrated accuracy.

  • PDF

Improvement of Photogrammetry Image Merging in Satellite Image Processing (인공위성 영상처리를 위한 사진접합정확도 향상기법)

  • Kang, In-Joon;Choi, Chul-Ung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.1 s.3
    • /
    • pp.93-98
    • /
    • 1994
  • This image of Kangseogu in Pusan, is a digital merge of aerial photos by scale of 1/1,200 map. The merge was carried out 2nd affine and bilinear interpolation. It can improve digital classification to help choose training sites and interprete classification results, and improve visual interpretation, as in this case, by adding detailed information to the multispectral TM data.

  • PDF

A Study on the Application of Interpolation and Terrain Classification for Accuracy Improvement of Digital Elevation Model (수지표고지형의 정확도 향상을 위한 지형의 분류와 보간법의 상용에 관한 연구)

  • 문두열
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.64-79
    • /
    • 1994
  • In this study, terrain classification, which was done by using the quantitative classification parameters and suitable interpolation method was applied to improve the accuracy of digital elevation models, and to increase its practical use of aerial photogrammetry. A terrain area was classified into three groups using the quantitative classification parameters to the ratio of horizontal, inclined area, magnitude of harmonic vectors, deviation of vector, the number of breakline and proposed the suitable interpolation. Also, the accuracy of digital elevation models was improved in case of large grid intervals by applying combined interpolation suitable for each terrain group. As a result of this study, I have an algorithm to perform the classification of the topography in the area of interest objectively and decided optimal data interpolation scheme for given topography.

  • PDF