• Title/Summary/Keyword: Aeration Time Ratio

Search Result 54, Processing Time 0.026 seconds

Sludge Returned CMAS에 의한 전기부속품제조공장 폐수처리

  • 김남천;이시진
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.427-433
    • /
    • 1997
  • Sludge Returned CMAS process was applied to treat the wastewater from electric accessory manufacturing company while this type of wastewater was usually treated by chemical process. This result show that the removal rate of TCOD was about 70-80% regardless of hydraulic retention time, On the contrary, the removal rate of BOD was abtained in a range of 77-92% depending on hydraulic retention time. In order to remove more than 80% of organic materials with the proposed process, the F/M ratio should be maintained below 0.17. In this case, the calculated value of organic removal rate, Km, was calculated to be 1.26 hr$^{-1}$, and the ratio of cell synthesis/total energy was 0.32 and 0.26 for COD and BOD base, respectively. The yield coefficient was calculated to be 0.242 and the half velocity coefficient was 0.3 hr$^{-1}$. The value of endogenous respiration coefficient was 0.02 hr$^{-1}$. The measured effluent BOD concentration, MLSS concentration in aeration tank, oxygen uptake rate, and sludge production were matched relatively well with the calculated values using above coefficients, In order to optimize the dewatering of sludge, the hydraulic retention time was recommended to be 15. 6 hrs. These results indicate that the wastewater from an eletric accessory manufacturing company can be treated safely with a biological process.

  • PDF

Nitrogen and Phosphorus Removal in Domestic Wastewater using SBR Process with Flow Changing Continuous Feed and Cyclic Draw (교대연속유입식 SBR 공정을 이용한 하수중의 질소 및 인 제거)

  • Seo, In-seok;Kim, Hong-suck;Kim, Youn-kwon;Kim, Ji-yeon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.203-208
    • /
    • 2006
  • A continuous feed and cyclic draw SBR process was developed to overcome flow rate fluctuation and to maximize organic matters utilization efficiency for nitrogen and phosphorus removal. The developed SBR process was operated with two parallel reactors. Influent was supplied to one reactor which was not obligately aerated. At the same time, the other reactor was just aerated without supplying influent. In addition this mode was changed periodically. Cycle time was 6hr and aeration time ratio($t_{aer}/t_{total}$) was 0.33, respectively. $COD_{cr}$ and SS removal efficiencies of 95% or higher were achieved. Nitrogen removal was so greatly influenced by influent $COD_{cr}/T-N$ ratio. At influent $COD_{cr}/T-N$ ratio of 5.7, removal efficiencies of ammonia-N, T-N and T-P were 96%, 78% and 55%, respectively. Influent $COD_{cr}/T-N$ of 4 or higher ratio was necessary to achieve 60% or higher nitrogen removal. Organic matters of influent was efficiently utilized in denitrification reaction and consumed COD has a good correlation with removed T-N(about 6.5 mgCOD/mgTN). Continuous feed and cyclic draw SBR process could be one of alternative processes for the removal of nutrients in rural area where $COD_{cr}/T-N$ ratio was low and fluctuation of flow rate was severe.

Composting Effectiveness of A Sundry System with A Bin-type Composter for Recyle of Animal Wastes (축분뇨처리를 위한 Bin형 부숙조- Sundry 시스템의 퇴비화효율 평가)

  • 최홍림;김현태;정영윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.92-103
    • /
    • 1993
  • A sunday system with a horizontal bin-type composter was constructed and operated to evaluate its composting performance for four days for each test in October, 1992. A sundry system is one of popular systems for composting livestock manure, of which main benefit is to utilize unlimited, clean, and free solar radiation. A rectangular concrete bin(composter) with dimension of 300cm(length) X90cm(width) X60cm(height) was bedded alternatively with four lanes of aeration pipes and heating pipes, and was insulated at three walls with 50mm styrofoam. Each aeration pipe of a diameter of 25mm had 4mm perforated holes at every 15cm longitudinally, and supplied air of about 2m$^3$/min to the composter to maintain aerobic condition . A stirrer rotating at 1 rpm made one round trip every 20 minutes on the conveying chain along the the length of the composter. Five tests (Test 1~Test 5) were implemented to evaluate the composting effectiveness of a sundry system with a horizontal bin-type composter. Treatments of two levels of the mixture ratio of swine manure and paper sludge cakes(manure : paper sludge cakes= 1 : 4 and 1 : 2) and two levels of the water content(W/C ; 70% and 50%) were made to test the significance of the physicochemical properties for decomposition of the mixture materials. Temperature, C/N ratio, water content, microbial activity of the composting materials were taken measurements to evaluate its performance with the lapse of composting time for tests. A small-scale sundry system with a bin-type composter did not appear to be an appropriate system for composting livestock manure. Since heat generation by the composting materials could not overcome heat loss due to areation in a small-scale composter, a proper thermal enviroment could not be maintained to propagate massively thermopilic microorganism relatively in a short period of time. Different from the result of Chol et al.(1992) 6), a temperature variation of the composting materials did not show the peak clearly and C/N ratio didn't lower with time as expected. Mesophilic microoragnism seemed to play an important role for decomposition of the mixture materials. A sundry system with a bin-type composter may be good for a large-scale livestock farm household which may produce enough animal manure. Therefore a decision should be made very carefully to choose a system for composting livestock waste.

  • PDF

Hydrodynamics and parametric study of an activated sludge process using residence time distribution technique

  • Sarkar, Metali;Sangal, Vikas K.;Bhunia, Haripada
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.400-408
    • /
    • 2020
  • Hydrodynamic study of Activated Sludge Process (ASP) is important to optimize the reactor performance and detect anomalies in the system. Residence time distribution (RTD) study has been performed using LiCl as tracer on a pilot scale aeration tank (AT) and ASP, treating the pulp and paper mill effluent. The hydraulic performance and treatment efficiency of the AT and ASP at different operating parameters like residence time, recycle rate was investigated. Flow anomalies were identified and based on the experimental data empirical models was suggested to interpret the hydrodynamics of the reactors using compartment modelling technique. The analysis of the RTD curves and the compartment models indicated increase in back-mixing ratio as the mean hydraulic retention time (MHRT) of the tank was increased. Bypassing stream was observed at lower MHRT. The fraction of dead zone in the tank increased by approximate 20-25% with increase in recycle rate. The fraction of the stagnant zone was found well below 5% for all performed experiments, which was under experimental error. The substrate removal of 91% for Chemical oxygen demand and 96% for Biochemical oxygen demand were observed for the ASP working at a hydraulic mean residence time 39 h MRT with a 20% recycling of activated sludge.

A Study on Treatment Characteristics and Design of Ultra High Rate Method (Ultra High Rate(UHR) 법의 처리특성 및 설계에 관한 연구)

  • Lee, Jeoung-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2239-2245
    • /
    • 2000
  • For the treatment of wastewater being discharged in large quantities as in these modern times, qualitative and quantitative concepts should be introduced in consideration of the recycling. In view of a qualitative concept, high rate aeration process is known as the most effective process up to now. However, Lee suggested UHR process showing the superiority over high rate process in treatment rate and quantity. Therefore, this study was performed to investigate the basic sphere of design and treatment quality, such as applicable $BOD_5$-loading and influent wastewater concentration of UHR process, based on Lee's suggestions1). Consequently, this process showed applicable $BOD_5$-loading of $2.2{\sim}7.0kg-BOD_5/kg-MLSS{\cdot}day$, exceeding three times or more of high rate process with maximum applicable loading of $2.25kg-BOD_5/kg-MLSS{\cdot}day$. Meanwhile, with the range of influent wastewater concentration from 200 to 450 mg/L. it showed the treatment rate from 94.7 to 97.3%, it indicated very good condition. In view of quantitative concept of treatment, UHR process is considered an epoch-making treatment process being superior to existing ones.

  • PDF

Experimental Study of Overtopping Void Ratio by Wave Breaking (쇄파에 의한 월파의 기포분율에 대한 실험적 연구)

  • Ryu, Yong-Uk;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.157-167
    • /
    • 2008
  • The aeration of an overtopping wave on a vertical structure generated by a plunging wave was investigated through laboratory measurements of void fraction. The overtopping wave occurring after wave breaking becomes multi-phased and turbulent with significant aeration, so that the void fraction of the flow is of importance. In this study, fiber optic reflectometer and bubble image velocimetry were employed to measure the void fraction, velocity, and layer thickness of the overtopping flow. Mean properties were obtained by ensembleand time-averaging the repeated instantaneous void fractions and velocities. The mean void fractions show that the overtopping wave is very high-aerated near the overtopping wave front and relatively low-aerated near the deck surface and rear free surface of the wave. The flow rate and momentum of the overtopping flow estimated using the measured data show that the void ratio is an important parameter to consider in the multiphase flow. From the similarity profiles of the depth-averaged void fraction, velocity, and layer thickness, one-dimensional empirical equations were obtained and used to estimate the flow rate and momentum of the overtopping flow.

Drying Characteristics of Oak Mushroom Using Conveyer Far Infrared Dryer - Down Draft Air Flow Type - (컨베이어 원적외선 건조기를 이용한 표고버섯의 건조특성 - 하향 송풍방식 -)

  • 연광석;김민호;한충수;조성찬;강태환;이해철;김창복;김진국
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • This study was conducted to develop a new drying method far reducing the drying cost and time and to investigate the drying characteristics of oak mushroom. A far infrared dryer of down draft air flow type used for this experiment can control the drying parameters, such as far infrared heater temperature and aeration velocity. The far infrared drying tests were performed at aeration velocities of 0.3 and 0.6m/s under the temperature of 90 and 100$^{\circ}C$ in for infrared heater, respectively. The results were compared and analyzed with those of an heated air drying method used as a control in terms of properties representing the drying characteristics. such as shrinkage rate, color, energy consumption amino acid components, drying rate and moisture ratio. The results obtained from this research can be summarized as follows. 1. The drying rate of far infrared drying was faster than that of heated air drying. With high temperature of far infrared heater and slow aeration velocity, the far infrared drying of down draft air flow type was superior to the heated air drying. 2. Most of far infrared drying conditions required less energy consumption than heated air drying. 3. The shrinkage rates of heated air drying and far infrared drying were decreased by 17.0% and 18.2∼19.8%, respectively. 4. The difference of color on oak mushroom surface before and after drying can be represented as $\Delta$E. $\Delta$E values of far infrared drying and heated air drying were 2.39∼4.55 and 6.77, respectively. 5. The amounts of free amino acids were higher in the far infrared than in the heated air drying. In addition the amounts of Gln and Glu generally were increased and those of Ala, Leu, and Val were decreased in order.

Changes in the Soil Physical Properties of Vineyard Converted from Paddy Field (논에서 전환한 포도원의 토양물리적 특성변화)

  • Yun, Eul-Soo;Jung, Ki-Youl;Park, Ki-Do;Ko, Jee-Yeon;Lee, Jae-Saeng;Park, Sung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.145-151
    • /
    • 2009
  • This study was conducted to develop rational soil management and enhance the productivity of lands converted from paddy soils. Specifically, the changes in the soil physical properties brought about by the change in land usage from paddy soil were evaluated. This was carried out from 1999 to 2001 at 50 site in large-scale converted paddy fields of Kimcheon, Youngcheon, Gyeongsan and Milyang in the Youngnam region, categorized according to soil texture and drainage class. The ridge height of converted paddy soils was higher in coarse-textured and poorly-drained soils than in fine-textured and well-drained soils. The gray color of the surface soil was of lesser degree in converted soils than paddy soils and more notable in welldrained soils. The porosity ratio and the formation of aggregate structure were higher, and the appearance of soil mottling was deeper in converted paddy fields than in paddy soils. The glaying layer "g" of surface soil degraded with time. The porosity and amount of water stable aggregate was found to increase with time after conversion. The penetration resistance of the converted paddy soil was lower and deeper with time after conversion. The soil aeration of the converted paddy soil was lower in sandy loam than in loamy soil. Furthermore, soil aeration was influenced by ridge height and drainage class in poorly-drained soils.

The Effect on the Friction Forces of Big-End Bearing by the Aerated Lubricant

  • Park, Young-Hwan;Jang, Si-Youl
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.425-426
    • /
    • 2002
  • Lineal and angular movements of many engine components make the lubricant absorb air and the aerated lubricant greatly influences the clearance performance of contacting behaviors of engine components such as big-end bearing, cam and tappet, etc. This study investigates the behaviors of aerated lubricant in the gap between con-rod bearing and proceeding which is one of the most frictional energy consuming components in the engine. Our assumption for the analysis of aerated lubricant film is that the film formation is influenced by the two major factors. One is the density characteristics of the lubricant due to the volume change of lubricant by absorbing the bubbles and the other is the viscosity characteristics of the lubricant due to the surface tension of the bubble in the lubricant. In our investigation, it is found that these two major factors surprisingly increase the load capacity in certain ranges of bubble sizes and densities. Frictional forces are also influenced by the aerated bubble size and density, which eventually enlarge the shear resistance due the surface tension, Modified Reynolds' equation is developed for the computation of fluid film pressure with the effects of aeration ratio under the dynamic loading condition. From the calculated load capacity by solving modified Reynolds' equation, proceeding locus is computed with Mobility method at each time step.

  • PDF

Direct membrane filtration of wastewater under very short hydraulic retention time

  • Yoon, Seong-Hoon
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.39-52
    • /
    • 2018
  • Direct membrane filtration (DMF) of wastewater has many advantages over conventional biological wastewater treatment processes. DMF is not only compact, but potentially energy efficient due to the lack of biological aeration. It also produces more biosolids that can be used to produce methane gas through anaerobic digestion. Most of ammoniacal nitrogen in wastewater is preserved in effluent and is used as fertilizer when effluent is recycled for irrigation. In this study, a technical feasibility of DMF was explored. Organic and nitrogen removal efficiencies were compared between DMF and membrane bioreactor (MBR). Despite the extremely high F/V ratio, e.g., $14.4kg\;COD/m^3/d$, DMF provided very high COD removal efficiencies at ~93%. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) were less in DMF sludge, but membrane fouling rate was far greater than in MBR. The diversity of microbial community in DMF appeared very narrow based on the morphological observation using optical microscope. On the contrary, highly diverse microbial community was observed in the MBR. Microorganisms tended to form jelly globs and attach on reactor wall in DMF. FT-IR study revealed that the biological globs were structurally supported by feather-like materials made of secondary amines. Confocal laser scanning microscopy (CLSM) study showed microorganisms mainly resided on the external surface of microbial globs rather than the internal spaces.