Experimental Study of Overtopping Void Ratio by Wave Breaking

쇄파에 의한 월파의 기포분율에 대한 실험적 연구

  • 유용욱 (한국건설기술연구원 하천해안연구실) ;
  • 이종인 (한국건설기술연구원 하천해안연구실)
  • Published : 2008.04.30

Abstract

The aeration of an overtopping wave on a vertical structure generated by a plunging wave was investigated through laboratory measurements of void fraction. The overtopping wave occurring after wave breaking becomes multi-phased and turbulent with significant aeration, so that the void fraction of the flow is of importance. In this study, fiber optic reflectometer and bubble image velocimetry were employed to measure the void fraction, velocity, and layer thickness of the overtopping flow. Mean properties were obtained by ensembleand time-averaging the repeated instantaneous void fractions and velocities. The mean void fractions show that the overtopping wave is very high-aerated near the overtopping wave front and relatively low-aerated near the deck surface and rear free surface of the wave. The flow rate and momentum of the overtopping flow estimated using the measured data show that the void ratio is an important parameter to consider in the multiphase flow. From the similarity profiles of the depth-averaged void fraction, velocity, and layer thickness, one-dimensional empirical equations were obtained and used to estimate the flow rate and momentum of the overtopping flow.

본 연구에서는 직립 구조물 전면에서 발생하는 권파에 의한 월파의 기포분율을 수리모형실험으로 검토하였다. 구조물 직립벽 전면에서 쇄파되는 내습파랑은 쇄파와 월파 과정동안 기포를 연행하거나 액적화되며 강한 난류세기를 갖는 다위상흐름이 된다. 본 연구에서는 광섬유반사율계와 기포를 이용한 영상유속계기법으로 월파의 기포분율, 유속, 그리고 층두께를 측정하였다. 반복된 실험으로 얻어진 기포분율과 유속은 조화평균과 시간평균을 적용하여 분석하였다. 평균된 기포분율의 분포로부터 높은 기포분율은 주로 월파수괴의 전면부에서 발생하는 것을 알 수 있었으며, 구조물 상단표면에 접한 영역과 월파수괴의 후면부 영역은 상대적으로 낮은 기포분율을 보여주었다. 측정된 월파의 기포분율, 유속, 그리고 층두께로부터 월파의 흐름율과 운동량을 산정하였고, 실험결과로부터 기포분율이 중요한 인자임을 알 수 있었다. 수심평균된 기포분율, 유속, 두께의 상사적 분포특성을 이용하여 경험식을 제시하였고, 1차원적 경험식을 이용하여 흐름율과 운동량을 검토하였다.

Keywords

References

  1. 유용욱, 이종인, 김영택 (2007). 쇄파에 의한 처오름과 월파 유속. 한국해안해양공학회지, 19(6), 606-613
  2. Chang, K.-A. and Liu, P.L.-F. (1999). Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Physics of Fluids, 11, 3390-3400 https://doi.org/10.1063/1.870198
  3. Chang, K.-A., Lim, H.-J., and Su, C.B. (2003). Fiber optic reflectometer for velocity and fraction ratio measurements in multiphase flows. Review of Scientific Instruments, 74, 3559-3565 https://doi.org/10.1063/1.1578152
  4. Chanson, H., Aoki, S., and Maruyama, M. (2002). Unsteady air bubble entrainment and detrainment at a plunging breaker: Dominant time scales and similarity of water level variation. Coastal Engineering, 46, 139-157 https://doi.org/10.1016/S0378-3839(02)00069-8
  5. Cox, D.T. and Ortega, J.A. (2002). Laboratory observations of green water overtopping a fixed deck. Ocean Engineering, 29, 1827-1840 https://doi.org/10.1016/S0029-8018(02)00011-2
  6. Cox, D.T. and Shin, S. (2003). Laboratory measurements of void fraction and turbulence in the bore region of surf zone waves. Journal of Engineering Mechanics, 129(10) 1197- 1205 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:10(1197)
  7. Deane, G.B. (1997). Sound generation and air entrainment by breaking waves in the surf zone. Journal of the Acoustical Society of America, 102(5), 2671-2689 https://doi.org/10.1121/1.420321
  8. Govender, K., Mocke, G.P. and Alport, M.J. (2002). Videoimaged surf zone wave and roller structures and flow fields. Journal of Geophysical Research, 107(C), 3072 https://doi.org/10.1029/2000JC000755
  9. Lamarre, E. and Melville, W. K. (1992). Instrumentation for the measurement of void-fraction in breaking waves: Laboratory and field results. IEEE Journal of Oceanic Engineering, 17, 204-215 https://doi.org/10.1109/48.126977
  10. Ryu, Y., Chang, K.-A. and Mercier, R. (2007). Runup and green water velocities due to breaking wave impinging and overtopping. Experiments in Fluids, 43, 555-567 https://doi.org/10.1007/s00348-007-0332-0