• 제목/요약/키워드: Advanced Oxidation

검색결과 895건 처리시간 0.021초

감마선 조사에 의한 2,4,6-Trinitrotoluene (TNT)의 분해 (Decomposition of 2,4,6-Trinitrotoluene (TNT) by Gamma Ray Irradiation)

  • 이병진;이면주
    • 대한환경공학회지
    • /
    • 제27권1호
    • /
    • pp.1-10
    • /
    • 2005
  • 본 연구의 목적은 수용액상의 TNT를 분해하기 위한 감마선 조사의 적용가능성을 조사하는 것이었다. 연구 결과, 감마선 조사에 의한 TNT 분해반응은 유사일차속도반응식을 따르는 것으로 나타났으며, 반응속도를 나타내는 조사상수는 초기 TNT 농도에 강한 의존성을 나타내는 것으로 조사되었다. TNT를 함유한 시료의 pH를 강염기성으로 조정할 경우 TNT의 가수분해가 진행되었으며, 이로 인한 TNT에 함유된 일부 질소성분이 아질산성 질소와 질산성질소로 탈리되어 이온상태로 존재하는 것을 확인할 수 있었다. 또한 UV에 의한 자외선 흡수 특성이 변하는 것을 확인하였다. 감마선 조사에 의한 TNT의 제거는 pH 12 이상의 강염기성 조건에서 가장 우수하였고, 중성 부근 pH에서 가장 저조한 것으로 나타났으며, 99%의 TNT를 제거하기 위해서는 pH 2, 7, 13을 적용하였을 경우에 각각 40, 80, 10 kGy의 조사량이 요구되는 것으로 조사되었다. TOC의 제거는 pH 2의 강산성 조건에서 가장 효과적이었으며, 200 kGy를 조사하였을 때 90% 이상의 TOC를 제거할 수 있는 것으로 나타났다. 그러나 중성 또는 강염기성 pH를 적용하였을 때에는 200 kGy의 높은 조사량을 적용하여도 TOC 제거율이 약 50% 내외로 완전한 TNT의 무기화는 기대하기 어려운 것으로 조사되었다. TNT의 분해과정에서 생성되는 분해산물 중 질소성분으로는 암모니아성 질소, 아질산성 질소, 질산성 질소 등이 검출되었고, 유기성 물질로는 glyoxalic acid와 oxalic acid가 검출되었으며, pH 2, 조사량 200 kGy를 적용하였을 경우에는 glyoxalic acid와 oxalic acid 또한 완전히 제거되는 것으로 나타났다.TEX> ~ FA-$N_{2}$ > RTA-$N_{2}$ 순으로 성장하였다. 하지만 질소분위기에서 열처리한 박막은 산소분위기의 열처리경우에 비해 박막내의 산소성분의 부족으로 인한 그레인 사이의 결함이 많이 관찰되었다.아제의 경우는 $30{\sim}35^{\circ}C$에서 2일간(日間)이었다. 5. Asp. neger CF-21 변이균주(變異菌株)의 산생성력(酸生成力)은 밀기울국(麴)에서 $30^{\circ}C$로 2일후(日後)에 최고(最高)에 달(達)하였으며 밀가루국(麴)에서는 $30^{\circ}C$로 3일후(日後)에 최고(最高)값을 나타내었다. 최적조건(最適條件)에서의 산생성력(酸生成力)은 밀기울국(麴)과 밀가루국(麴) 사이에 차(差)가 별(別)로 없었다.果)에서 총지질(總脂質)을 구성(構咸)하는 지방산(脂肪酸) 조성(組成)은 $C_{18:2}$산(酸), $C_{16:0}$산(酸)의 순(順)으로 그 함량(含最)이 맞은데 비(比)하여 각획분(各劃分)의 지질(脂質)을 구성(構成)하는 지방산(脂肪酸) 조성(組成)은 $C_{16:0}$산(酸), $C_{18:2}$산(酸)의 순(順)으로 그 함량(含量)이 많은 것으로 나타났으며 동결건조후(凍結乾燥後) 저장(貯藏)하는 동안에$C_{18:2}$산(酸), $C_{18:3}$산(酸)의 함량(含量)이 계속(繼續) 감소(減少)하고 있었다. 5. 4-monomethylsterol fraction에는 cycloartenol(20.6%)이 비교적(比較的) 높은 함량(含量)으로 함유(含有)

국내 유통되는 퓨어 및 정제 올리브유의 이화학적 특성 및 향기 분석 (Analysis of Physicochemical Characterization and Volatiles in Pure or Refined Olive Oils)

  • 남하영;이주운;홍장환;이기택
    • 한국식품영양과학회지
    • /
    • 제36권11호
    • /
    • pp.1409-1416
    • /
    • 2007
  • 국내 시중에서 유통되는 국내외 브랜드의 퓨어 및 정제올리브유에 대한 이화학적 특성 및 이들의 향기 성분을 비교 분석하였다. 총 7종의 퓨어 및 정제 올리브유의 지방산 조성을 비교한 결과 palmitic(16:0, $10.2{\sim}16.8$ mole%), palmitoleic(16:1, $0.7{\sim}2.4$ mole%), stearic(18:0, $1.9{\sim}3.0$ mole%), oleic(18:1, $61.2{\sim}74.7$ mole%), linoleic(18:2, $9.4{\sim}18.0$ mole%) 및 linolenic acid(18:3, $0.5{\sim}0.9$ mole%)로 분석되었다. 색도 분석에서 퓨어 및 정제 올리브유의 $L^*$값은 $92.2{\sim}99.0$, $a^*$값은 $-22.2{\sim}-3.2$, $b^*$값은 $18.5{\sim}55.0$을 나타내었다. 이들의 총 페놀 함량 측정 결과 국내 브랜드 퓨어 올리브유에서는 $2.2{\sim}13.3$ mg/100g, 수입 브랜드 퓨어 및 정제 올리브유에서는 $1.9{\sim}5.1mg/100g$으로 나타났고, ${\alpha}$-토코페롤 함량은 $7.91{\sim}13.88$ mg/100g로 조사되었다. 퓨어 및 정제올리브유 시료들의 초기 POV는 $6.83{\sim}20.31$ meq/kg의 수치를 보였고, 이들의 induction period time은 $17.37{\sim}34.72$ hr로 나타났다. 주요 향 성분의 구별을 위해 SPME-GC/MS 분석을 실시한 결과, 올리브유의 주요 향 성분으로 acetic acid, hexanal, heptanal, 2,4-dimethyl-heptane 등이 동정되었고, MOS 유형의 전자코를 이용하여 퓨어 및 정제 올리브유 향기패턴에 대한 주성분분석을 한 결과, 이들의 원산지별과 국내 수입 브랜드 및 혼합율에 의한 향기 성분 패턴 경향성을 찾아보기 어려웠다.

상향류식 혐기성 슬러지 블랭킷 반응조에 비교한 생물전기화학 반응조의 산성 주정폐수처리성능 (Performance of Upflow Anaerobic Bioelectrochemical Reactor Compared to the Sludge Blanket Reactor for Acidic Distillery Wastewater Treatment)

  • 풍경;송영채;유규선;반와리 랄;난다쿠마르 쿱파난;산죽타 수부디
    • 대한환경공학회지
    • /
    • 제38권6호
    • /
    • pp.279-290
    • /
    • 2016
  • 중화하지 않은 주정폐수를 처리할 때 상향류식 혐기성반응조에 전극을 배치한 생물전기화학반응조의 성능을 UASB 공정과 비교하였다. UASB 공정은 유기물부하율 4.0 g COD/L.d 이하에서 pH, VFA 및 알카리도 등에 있어서 안정한 상태를 유지하였지만, 4.0 g COD/L.d 이상의 유기물부하율에서는 불안정하였다. 그러나, 생물전기화학 반응조는 UASB 반응조에 비하여 유기물부하율 배가시 상태변수들의 변동폭이 작았으며, 빠르게 정상상태로 회복하였다. 생물전기화학 반응조는 4.0-8.0g COD/L.d의 높은 유기물부하율에서 상태변수들이 UASB 반응조에 비하여 안정하였으며, 유기물부하율 8.0 g COD/L.d에서 비메탄발생율(2,076mL $CH_4/L.d$), 바이오가스의 메탄함량(66.8%) 그리고 COD 제거율(82.3%) 등의 측면에서 UASB 반응조보다 우수하였다. 생물전기화학 반응조의 메탄수율은 유기물부하율 4.0 g COD/L.d에서 약 407mL/g $COD_r$로 최대값을 보였으며, 이 값은 UASB의 282mL/g $COD_r$보다 크게 높았다. 중화하지 않은 산성 주정폐수를 처리하는 생물전기화학 반응조의 전극반응에서 율속단계는 산화전극반응이었으며, 전극반응은 높은 유기물부하율에서 pH에 의해서 크게 영향을 받았다. 생물전기화학 반응조는 유기물부하율 4.0 g COD/L.d에서 99.5%의 최대에너지효율을 보였다. 중화하지 않은 산성 주정폐수를 처리하는 생물전기화학 반응조는 UASB 공정보다 진보된 고율 혐기성 기술이 될 수 있다.

혼합방법에 따른 순환아스팔트 혼합물의 수분저항성 통계검정 평가 (Statistical Evaluation of Moisture Resistance by Mixing Method of Recycled Asphalt Mixtures)

  • 김성운;김영삼;조영진;김광우
    • 한국건설순환자원학회논문집
    • /
    • 제9권2호
    • /
    • pp.167-176
    • /
    • 2021
  • 순환아스팔트 혼합물은 제조 시 믹서에서 혼합되는 동안 노화된 RAP(회수 아스팔트포장재)을 잘 녹이는 것이 중요하다. 순환아스팔트 혼합물은 모든 재료(RAP, 신규 아스팔트 및 신규 골재)를 동시에 믹서에 넣고 혼합하여 생산한다. 동시 혼합(IM)방법으로 제조된 순환아스팔트 혼합물의 경우 RAP에 포함된 노화된 바인더는 신규 바인더와 혼합되는 동안 적절하게 회생되지 못하기 때문에 동일한 혼합물 내에서 신규 골재 주위에 코팅된 바인더보다 더 높은 산화·노화 수준을 나타내며, 큰 강성을 보인다. 본 연구에서는 RAP의 노화된 바인더를 회생시키기 위해서 단계 혼합(SM) 방법을 적용하였다. 첫 번째 단계에서는 RAP과 신규 아스팔트를 혼합한 다음 두 번째 단계에서는 가열된 신규 골재와 함께 혼합하였다. 혼합 방법에 따른 순환아스팔트 혼합물의 수분저항성 개선효과를 비교하기 위해 간접인장강도(ITS)와 인장강도 비(TSR) 시험을 수행하여 SM 방법과 IM 방법 간에 통계적 t- 테스트를 수행했다. 수분저항성을 평가하기 위해서 세 가지 전처리 조건 즉, -18℃ 동결 후 60℃에서 24 시간 수침, 60℃에서 48 시간 수침 및 60℃에서 72 시간 수침 조건을 적용하였다. SM 방법으로 제조한 순환아스팔트 혼합물의 TSR은 IM 방법에 의한 순환아스팔트 혼합물보다 분명히 높았고, SM 방법의 변동계수는 IM보다 낮았다. 또한 통계적 t-test에 의해 SM 방법의 ITSWET이 α = 0.05 수준에서 IM과 유의하게 다른 것으로 관찰되었다. 또한, SM 방법의 ITSWET은 IM과 비교하여 더 가혹한 조건에서 처리할수록 훨씬 개선된 결과를 나타냈다. 따라서 단계 혼합 방법은 기존의 동시 혼합방법으로 생산된 순환아스팔트 혼합물보다 더 높은 수분저항성을 보이고, 보다 더 우수한 순환아스팔트 혼합물을 생산하기 위한 중요한 혼합 방법임을 확인하였다.

O3/BAC 공정에서 Peroxone 공정 적용에 따른 잔류 과산화수소 제거 특성 (Removal Characteristics of Residual Hydrogen Peroxide (H2O2) according to Application of Peroxone Process in O3/BAC Process)

  • 염훈식;손희종;서창동;김상구;류동춘
    • 대한환경공학회지
    • /
    • 제35권12호
    • /
    • pp.889-896
    • /
    • 2013
  • 수중의 미량 유해물질 제거를 위해 AOP 공정에 대한 관심이 증대되고 있다. 낙동강 하류에 위치한 정수장들은 대부분 $O_3/BAC$ 공정을 채택하여 운전 중에 있으며, AOP 공정의 일종인 peroxone 공정의 적용에 많은 관심을 가지고 있다. 본 연구에서는 $O_3/BAC$ 공정을 운전 중인 정수장에서 과산화수소를 투입할 경우에 후단의 BAC 공정에서의 잔류 과산화수소의 제거 특성을 biofiltration 공정과 함께 평가하였다. 유입수의 수온 및 과산화수소 농도변화 실험에서 biofilteration 공정은 낮은 수온에서 유입수 중의 과산화수소 농도가 증가하면 급격히 생물분해능이 저하된 반면, BAC 공정에서는 비교적 안정적인 효율을 유지하였다. 유입수의 수온을 $20^{\circ}C$, 과산화수소 투입농도를 300 mg/L로 고정하여 78시간 동안 연속으로 투입한 실험에서 biofilteration 공정은 EBCT 5~15분의 경우 운전 24~71시간 후에는 유입된 과산화수소가 거의 제거되지 않았으나, BAC 공정에서는 78시간 후의 과산화수소 제거율이 EBCT 5~15분일 때 38%~91%로 나타났다. 또한, 78시간 동안 연속 투입실험 후의 biofilter와 BAC 부착 박테리아들의 생체량과 활성도는 각각 $6.0{\times}10^4CFU/g$$0.54mg{\cdot}C/m^3{\cdot}hr$$0.4{\times}10^8CFU/g$$1.42mg{\cdot}C/m^3{\cdot}hr$로 나타나 운전초기에 비해 biofilter에서는 생체량과 활성도가 각각 99%와 72% 감소하였으며, BAC의 경우는 각각 68%와 53%의 감소율을 나타내었다. BAC 공정에서 생물분해 속도상수($k_{bio}$)와 반감기($t_{1/2}$)를 조사한 결과, 수온 $5^{\circ}C$에서 과산화수소 농도가 10 mg/L에서 300 mg/L로 증가할수록 $k_{bio}$$1.173min^{-1}$에서 $0.183min^{-1}$으로 감소하였고, $t_{1/2}$은 0.591 min에서 3.787 min으로 증가하였다. 수온 $25^{\circ}C$의 경우 $k_{bio}$$t_{1/2}$$1.510min^{-1}$에서 $0.498min^{-1}$ 및 0.459 min에서 1.392 min으로 나타나 수온 $5^{\circ}C$에 비해 수온이 $15^{\circ}C$$25^{\circ}C$로 상승할 경우 $k_{bio}$는 각각 1.1배~2.1배 및 1,3배~4.4배 정도 증가하였다. $O_3/BAC$ 공정을 운전 중인 정수장에서 peroxone 공정의 적용을 위해 과산화수소 투입을 고려할 경우, 후단의 BAC 공정에서 잔류 과산화수소를 효과적으로 제거 가능하였고, 고농도의 과산화수소 유출사고시에는 BAC 공정의 EBCT를 최대한 증가시켜 운전할 경우 수중의 과산화수소 농도를 최대한 저감시킬 수 있을 것으로 판단된다.